Soil Conditioner Affects Tobacco Rhizosphere Soil Microecology.

Enzyme activity Fertilizer Microbial diversity Soil conditioner Tobacco

Journal

Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 23 02 2022
accepted: 29 04 2022
medline: 28 6 2023
pubmed: 22 5 2022
entrez: 21 5 2022
Statut: ppublish

Résumé

Reasonable fertilization management can increase nutrient content and enzyme activity in rhizosphere soil, and even increase soil microbial richness. However, different fertilizers could raise distinct influences on the soil properties, including soil environmental factors (physicochemical properties and enzymatic activities) and microbial community. Here, the effects of two soil amendments (microbial fertilizer and woody peat) on environmental factors and microbial community structure in tobacco rhizosphere soil were evaluated, with the correlations between microbes and environmental factors explored. As the results, microbial fertilizer could effectively alleviate soil acidification, increase available potassium and organic matter contents in soil, and was also beneficial to increase nitrate reductase activity in rhizosphere soil. Fertilizers cause changes in the abundance of certain microbes in the soil. Besides, it was shown that the candidate phyla Gal15, Acidobacterota, Latescibacterota, Mortierellommycota, Basidiomycota, and Rozellomycota in tobacco rhizosphere soil had significant correlation with soil environmental factors. Through the functional analysis of these populations, it can be deduced that the changes in the abundance of certain microorganisms may be an important reason for the differences in environmental factors. All these indicated that the differences of environmental factors in different treatments are closely related to the abundance of some special soil microorganisms. Studying the life activities of these microbes would provide good guidance for exploring the interaction among crops, soil, and microorganisms and improving crop yields.

Identifiants

pubmed: 35596751
doi: 10.1007/s00248-022-02030-8
pii: 10.1007/s00248-022-02030-8
doi:

Substances chimiques

Soil 0
Fertilizers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

460-473

Subventions

Organisme : Hubei tobacco company
ID : 027Y2021-011
Organisme : Qingdao (Shandong Province) Tobacco Company
ID : 201903
Organisme : Qingdao Agricultural University
ID : 6651117005, 6651121004

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Hasnain M, Chen JW, Ahmed N, Memon S, Wang L, Wang YM, Wang P (2020) The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability 12(21):9065. https://doi.org/10.3390/su12219065
doi: 10.3390/su12219065
Rahman MM, Khanom A, Biswas SK (2021) Effect of pesticides and chemical fertilizers on the nitrogen cycle and functional microbial communities in paddy soils: Bangladesh perspective. Bull Environ Contam Toxicol 106(2):243–249. https://doi.org/10.1007/s00128-020-03092-5
doi: 10.1007/s00128-020-03092-5 pubmed: 33452610
Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66
doi: 10.1186/1475-2859-13-66 pubmed: 24885352 pmcid: 4022417
Wei YQ, Wang J, Chang RX, Zhan YB, Wei D, Zhang L, Chen Q (2021) Composting with biochar or woody peat addition reduces phosphorus bioavailability. Sci Total Environ 764:142841. https://doi.org/10.1016/j.scitotenv.2020.142841
doi: 10.1016/j.scitotenv.2020.142841 pubmed: 33077217
Jimenez-Gomez A, Garcia-Estevez I, Teresa Escribano-Bailon M, Garcia-Fraile P, Rivas R (2021) Bacterial fertilizers based on Rhizobium laguerreae and Bacillus halotolerans enhance Cichorium endivia L. phenolic compound and mineral contents and plant development. Foods 10(2):424. https://doi.org/10.3390/foods10020424
doi: 10.3390/foods10020424 pubmed: 33671987 pmcid: 7919373
Macik M, Gryta A, Sas-Paszt L, Frac M (2020) The status of soil microbiome as affected by the application of phosphorus biofertilizer: fertilizer enriched with beneficial bacterial strains. Int J Mol Sci 21(21):8003. https://doi.org/10.3390/ijms21218003
doi: 10.3390/ijms21218003 pubmed: 33121206 pmcid: 7663420
Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241(2):155–176. https://doi.org/10.1023/a:1016125726789
doi: 10.1023/a:1016125726789
Liu M, Han G, Zhang Q (2019) Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in southwest China. Int J Environ Res Public Health 16(20):3809. https://doi.org/10.3390/ijerph16203809
doi: 10.3390/ijerph16203809 pubmed: 31658612 pmcid: 6843380
Wang XQ, Yu HY, Li FB, Liu TX, Wu WJ, Liu CP, Liu CS, Zhang XQ (2019) Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO
doi: 10.1016/j.scitotenv.2018.08.387 pubmed: 30176464
Ding LJ, Su JQ, Sun GX, Wu JS, Wei WX (2018) Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Appl Microbiol Biotechnol 102(4):1969–1982. https://doi.org/10.1007/s00253-017-8704-8
doi: 10.1007/s00253-017-8704-8 pubmed: 29274058
Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
doi: 10.1146/annurev.phyto.42.012604.135455 pubmed: 15283667
Hou E, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ (2018) Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob Change Biol 24(8):3344–3356. https://doi.org/10.1111/gcb.14093
doi: 10.1111/gcb.14093
Plassart P, Prevost-Boure NC, Uroz S, Dequiedt S, Stone D, Creamer R, Griffiths RI, Bailey MJ, Ranjard L, Lemanceau P (2019) Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci Rep 9:605. https://doi.org/10.1038/s41598-018-36867-2
doi: 10.1038/s41598-018-36867-2 pubmed: 30679566 pmcid: 6345909
Sheng YY, Cong J, Lu H, Yang LS, Liu Q, Li DQ, Zhang YG (2019) Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen 8(10):e874. https://doi.org/10.1002/mbo3.874
doi: 10.1002/mbo3.874 pubmed: 31215766 pmcid: 6813455
Zheng Q, Hu YT, Zhang SS, Noll L, Boeckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019) Soil multifunctionality is affected by the soil environment and by microbial Choo community composition and diversity. Soil Biol Biochem 136:107521. https://doi.org/10.1016/j.soilbio.2019.107521
doi: 10.1016/j.soilbio.2019.107521 pubmed: 31700196 pmcid: 6837881
Jia T, Cao MW, Wang RH (2018) Effects of restoration time on microbial diversity in rhizosphere and non-rhizosphere soil of Bothriochloa ischaemum. Int J Environ Res Public Health 15(10):2155. https://doi.org/10.3390/ijerph15102155
doi: 10.3390/ijerph15102155 pubmed: 30274384 pmcid: 6210566
Khan MAI, Biswas B, Smith E, Mahmud SA, Hasan NA, Khan MAW, Naidu R, Megharaj M (2018) Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotox Environ Safe 156:434–442. https://doi.org/10.1016/j.ecoenv.2018.03.006
doi: 10.1016/j.ecoenv.2018.03.006
Shang LR, Wan LQ, Zhou XX, Li S, Li XL (2020) Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE 15(10):e0240559. https://doi.org/10.1371/journal.pone.0240559
doi: 10.1371/journal.pone.0240559 pubmed: 33057441 pmcid: 7561123
Martinez CM, Alvarez LH, Celis LB, Cervantes FJ (2013) Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 97(24):10293–10308. https://doi.org/10.1007/s00253-013-5350-7
doi: 10.1007/s00253-013-5350-7 pubmed: 24220793
Haruna A, Yahaya SM (2021) Recent advances in the chemistry of bioactive compounds from plants and soil microbes: a review. Chemistry Africa 4(2):231–248. https://doi.org/10.1007/s42250-020-00213-9
doi: 10.1007/s42250-020-00213-9 pmcid: 7869076
Zhang ST, Song XN, Li N, Zhang K, Liu GS, Li XS, Wang ZZ, He XB, Wang GF, Shao HF (2018) Influence of high-carbon basal fertiliser on the structure and composition of a soil microbial community under tobacco cultivation. Res Microbiol 169(2):115–126. https://doi.org/10.1016/j.resmic.2017.10.004
doi: 10.1016/j.resmic.2017.10.004 pubmed: 29122672
Wang ZB, Yang Y, Xia YZ, Wu T, Zhu J, Yang JM, Li ZF (2019) Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci Rep 9:19969. https://doi.org/10.1038/s41598-019-55859-4
doi: 10.1038/s41598-019-55859-4 pubmed: 31882572 pmcid: 6934738
Chen SF, Zhou YQ, Chen YR, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):884–890. https://doi.org/10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560
Kuppardt A, Kleinsteuber S, Vogt C, Luders T, Harms H, Chatzinotas A (2014) Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Microb Ecol 68(2):222–234. https://doi.org/10.1007/s00248-014-0403-8
doi: 10.1007/s00248-014-0403-8 pubmed: 24623528
Nagao T (1971) Studies on the growth of tobacco roots: IX. On the respiratory character of root apex. Crop Sci Soc Japan 40(3). https://doi.org/10.1626/jcs.40.341  
Cooke JD, Hamilton-Taylor J, Tipping E (2007) On the acid-base properties of humic acid in soil. Environ Sci Technol 41(2):465–470. https://doi.org/10.1021/es061424h
doi: 10.1021/es061424h pubmed: 17310708
Feng JY, Chu SS, Wang J, Wu DM, Mo QF, Zeng SC (2018) Comprehensive evaluation of soil fertility of five typical forest stands in South China. J South China Agric Univ 39(3):73–81
Bai ZH, Li HG, Yang XY, Zhou BK, Shi XJ, Wang BR, Li DC, Shen JB, Chen Q, Qin W, Oenema O, Zhang FS (2013) The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372(1–2):27–37. https://doi.org/10.1007/s11104-013-1696-y
doi: 10.1007/s11104-013-1696-y
Tang ZX, Chen LL, Chen ZB, Fu YL, Sun XL, Wang BB, Xia TY (2020) Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci Rep 10(1):19868. https://doi.org/10.1038/s41598-020-76919-0
doi: 10.1038/s41598-020-76919-0 pubmed: 33199769 pmcid: 7669845
Baldantoni D, Morra L, Saviello G, Alfani A (2016) Nutrient and toxic element soil concentrations during repeated mineral and compost fertilization treatments in a Mediterranean agricultural soil. Environ Sci Pollut Res 23(24):25169–25179. https://doi.org/10.1007/s11356-016-7748-0
doi: 10.1007/s11356-016-7748-0
Hanief A, Matiichine D, Laursen AE, Bostan IV, McCarthy LH (2015) Nitrogen and phosphorus loss potential from biosolids-amended soils and biotic response in the receiving water. J Environ Qual 44(4):1293–1303. https://doi.org/10.2134/jeq2015.01.0029
doi: 10.2134/jeq2015.01.0029 pubmed: 26437111
Pardo T, Bernal MP, Clemente R (2014) Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere 107:121–128. https://doi.org/10.1016/j.chemosphere.2014.03.023
doi: 10.1016/j.chemosphere.2014.03.023 pubmed: 24875879
Floch C, Capowiez Y, Criquet S (2009) Enzyme activities in apple orchard agroecosystems: how are they affected by management strategy and soil properties. Soil Biol Biochem 41(1):61–68. https://doi.org/10.1016/j.soilbio.2008.09.018
doi: 10.1016/j.soilbio.2008.09.018
Li Y, Fang F, Wei JL, Wu XB, Cui RZ, Li GS, Zheng FL, Tan DS (2019) Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Sci Rep 9:12014. https://doi.org/10.1038/s41598-019-48620-4
doi: 10.1038/s41598-019-48620-4 pubmed: 31427666 pmcid: 6700118
Zhang XP, Gao GB, Wu ZZ, Wen X, Zhong H, Zhong ZZ, Yang CB, Bian FY, Gai X (2020) Responses of soil nutrients and microbial communities to intercropping medicinal plants in moso bamboo plantations in subtropical China. Environ Sci Pollut Res 27(2):2301–2310. https://doi.org/10.1007/s11356-019-06750-2
doi: 10.1007/s11356-019-06750-2
Wu LN, Jiang Y, Zhao FY, He XF, Liu HF, Yu K (2020) Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Sci Rep 10(1):9568. https://doi.org/10.1038/s41598-020-66648-9
doi: 10.1038/s41598-020-66648-9 pubmed: 32533037 pmcid: 7293320
Li YF, Geng YQ, Zhou HQ, Yang Y (2016) Comparison of soil acid phosphatase activity determined by different methods. Chin J Eco-Agric 24(1):98–104. https://doi.org/10.13930/j.cnki.cjea.150496
doi: 10.13930/j.cnki.cjea.150496
Han X, Cheng ZH, Meng HW (2012) Soil properties, nutrient dynamics, and soil enzyme activities associated with garlic stalk decomposition under various conditions. PLoS ONE 7(11):e50868. https://doi.org/10.1371/journal.pone.0050868
doi: 10.1371/journal.pone.0050868 pubmed: 23226411 pmcid: 3511307
Marko B, Sonja B, Andreas S, Annick S (2014) Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biol 14:257. https://doi.org/10.1186/s12870-014-0257-8
doi: 10.1186/s12870-014-0257-8
Tao CY, Li R, Xiong W, Shen ZZ, Liu SS, Wang BB, Ruan YZ, Geisen S, Shen QR, Kowalchuk GA (2020) Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8(1):137. https://doi.org/10.1186/s40168-020-00892-z
doi: 10.1186/s40168-020-00892-z pubmed: 32962766 pmcid: 7510105
Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, Dove NC, Fairbanks D, Gallery RE, Hart SC, Kaye J, King G, Logan G, Lohse KA, Maltz MR, Mayorga E, O’Neill C, Owens SM, Packman A, Pett-Ridge J, Plante AF, Richter DD, Silver WL, Yang WH, Fierer N (2019) Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBbio 10(5):e01318-e1319. https://doi.org/10.1128/mBio.01318-19
doi: 10.1128/mBio.01318-19
Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL (2020) Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024. https://doi.org/10.3389/fmicb.2020.580024
doi: 10.3389/fmicb.2020.580024 pubmed: 33193209 pmcid: 7661733
Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. https://doi.org/10.3389/fmicb.2016.00744
doi: 10.3389/fmicb.2016.00744 pubmed: 27303369 pmcid: 4885859
Zhang YG, Cong J, Lu H, Li GL, Qu YY, Su XJ, Zhou JZ, Li DQ (2014) Community structure and elevational diversity patterns of soil Acidobacteria. J Environ Sci 26(8):1717–1724. https://doi.org/10.1016/j.jes.2014.06.012
doi: 10.1016/j.jes.2014.06.012
Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18(5):673–693. https://doi.org/10.1016/s0735-2689(99)00396-2
doi: 10.1016/s0735-2689(99)00396-2
Holzapfel C, Shahrokh P, Kafkewitz D (2010) Polyphenol oxidase activity in the roots of seedlings of Bromus (Poaceae) and other grass genera. Am J Bot 97(7):1195–1199. https://doi.org/10.3732/ajb.0900337
doi: 10.3732/ajb.0900337 pubmed: 21616870
Martens DA (2002) Identification of phenolic acid composition of alkali-extracted plants and soils. Soil Sci Soc Am J 66(4):1240–1248. https://doi.org/10.2136/sssaj2002.1240
doi: 10.2136/sssaj2002.1240
Vazquez G, Fontenla E, Santos J, Freire MS, Gonzalez-Alvarez J, Antorrena G (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 28(3):279–285. https://doi.org/10.1016/j.indcrop.2008.03.003
doi: 10.1016/j.indcrop.2008.03.003
Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, Wilkins MJ, Williams KH, Singh A, Banfield JF (2016) Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 18(1):159–173. https://doi.org/10.1111/1462-2920.12930
doi: 10.1111/1462-2920.12930 pubmed: 26033198
Muneer MA, Huang XM, Hou W, Zhang YD, Cai YY, Munir MZ, Wu LQ, Zheng CY (2021) Response of fungal diversity, community composition, and functions to nutrients management in red soil. J Fungi 7(7):554. https://doi.org/10.3390/jof7070554
doi: 10.3390/jof7070554
Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS (2015) A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Van Leeuwenhoek 107(2):467–485. https://doi.org/10.1007/s10482-014-0344-8
doi: 10.1007/s10482-014-0344-8 pubmed: 25481407
Hsueh PR, Teng LJ, Yang PC, Chen YC, Pan HJ, Ho SW, Luh KT (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26(3):676–681. https://doi.org/10.1086/514595
doi: 10.1086/514595 pubmed: 9524843
Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68(12):6021–6028. https://doi.org/10.1128/aem.68.12.6021-6028.2002
doi: 10.1128/aem.68.12.6021-6028.2002 pubmed: 12450824 pmcid: 134425
Kulikova NA, Perminova IV (2021) Interactions between humic substances and microorganisms and their implications for nature-like bioremediation technologies. Molecules 26(9):2706. https://doi.org/10.3390/molecules26092706
doi: 10.3390/molecules26092706 pubmed: 34063010 pmcid: 8124324
Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69(6):891–895. https://doi.org/10.1021/np060051v
doi: 10.1021/np060051v pubmed: 16792406
Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81. https://doi.org/10.1016/s0065-2911(08)60143-5
doi: 10.1016/s0065-2911(08)60143-5 pubmed: 8540419
Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9(5):1306–1316. https://doi.org/10.1111/j.1462-2920.2007.01250.x
doi: 10.1111/j.1462-2920.2007.01250.x pubmed: 17472642
Yuan J, Wen T, Zhang H, Zhao ML, Penton CR, Thomashow LS, Shen QR (2020) Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J 14(12):2936–2950. https://doi.org/10.1038/s41396-020-0720-5
doi: 10.1038/s41396-020-0720-5 pubmed: 32681158 pmcid: 7784920
Ishfaq M, Mahmood N, Akbar M, Nasir IA, Saleem M (2019) Biochemical and molecular characterization of catalase enzyme in the saprobic fungus: Sordaria fimicola. Pak J Pharm Sci 32(4):1717–1722
pubmed: 31608896
Wang XY, Bian Q, Jiang YJ, Zhu LY, Chen Y, Liang YT, Sun B (2021) Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol Biochem 153:108062. https://doi.org/10.1016/j.soilbio.2020.108062
doi: 10.1016/j.soilbio.2020.108062
Tan XP, Xie BN, Wang JX, He WX, Wang XD, Wei GH (2014) County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment. Sci World J 2014:535768 https://doi.org/10.1155/2014/535768
Liu JB, Chen J, Chen GS, Guo JF, Li YQ (2020) Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE 15(2):e0220599. https://doi.org/10.1371/journal.pone.0220599
doi: 10.1371/journal.pone.0220599 pubmed: 32017763 pmcid: 6999874

Auteurs

Xiangquan Yu (X)

Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.

Yuzhen Zhang (Y)

Energy-Rich Compounds Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.

Minchong Shen (M)

Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.

Shanyu Dong (S)

Yichang Tobacco Company of Hubei Province, Yichang, China.

Fujun Zhang (F)

Linyi Tobacco Company of Shandong Province, Linyi, China.

Qiang Gao (Q)

Linyi Tobacco Company of Shandong Province, Linyi, China.

Penglin He (P)

Linyi Tobacco Company of Shandong Province, Linyi, China.

Guoming Shen (G)

Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.

Jianming Yang (J)

Energy-Rich Compounds Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.

Zhaobao Wang (Z)

Energy-Rich Compounds Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China. wangzhaobao123@126.com.

Guodong Bo (G)

Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China. boguodong123@163.com.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring

Classifications MeSH