Nitrogen-Doped Zinc Oxide for Photo-Driven Molecular Hydrogen Production.
EPR spectroscopy
nitrogen doping
photocatalysis
semiconductors
zinc oxide
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
07 May 2022
07 May 2022
Historique:
received:
01
04
2022
revised:
03
05
2022
accepted:
04
05
2022
entrez:
14
5
2022
pubmed:
15
5
2022
medline:
18
5
2022
Statut:
epublish
Résumé
Due to its thermal stability, conductivity, high exciton binding energy and high electron mobility, zinc oxide is one of the most studied semiconductors in the field of photocatalysis. However, the wide bandgap requires the use of UV photons to harness its potential. A convenient way to appease such a limitation is the doping of the lattice with foreign atoms which, in turn, introduce localized states (defects) within the bandgap. Such localized states make the material optically active in the visible range and reduce the energy required to initiate photo-driven charge separation events. In this work, we employed a green synthetic procedure to achieve a high level of doping and have demonstrated how the thermal treatment during synthesis is crucial to select specific the microscopic (molecular) nature of the defect and, ultimately, the type of chemistry (reduction versus oxidation) that the material is able to perform. We found that low-temperature treatments produce material with higher efficiency in the water photosplitting reaction. This constitutes a further step in the establishment of N-doped ZnO as a photocatalyst for artificial photosynthesis.
Identifiants
pubmed: 35563612
pii: ijms23095222
doi: 10.3390/ijms23095222
pmc: PMC9100422
pii:
doi:
Substances chimiques
Hydrogen
7YNJ3PO35Z
Zinc
J41CSQ7QDS
Nitrogen
N762921K75
Zinc Oxide
SOI2LOH54Z
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
ACS Appl Mater Interfaces. 2011 Aug;3(8):3152-6
pubmed: 21770403
Phys Rev Lett. 2002 Jan 28;88(4):045504
pubmed: 11801137
Acc Chem Res. 2012 May 15;45(5):767-76
pubmed: 22475039
J Phys Chem B. 2005 Jun 16;109(23):11414-9
pubmed: 16852395
Nano Lett. 2009 Jun;9(6):2331-6
pubmed: 19449878
Chem Asian J. 2012 Aug;7(8):1772-80
pubmed: 22674616
J Colloid Interface Sci. 2020 Apr 1;565:142-155
pubmed: 31951986
Chem Commun (Camb). 2005 Jan 28;(4):498-500
pubmed: 15654382
Chem Sci. 2020 Jul 1;11(26):6623-6641
pubmed: 34094123
J Am Chem Soc. 2006 Dec 13;128(49):15666-71
pubmed: 17147376
Phys Rev Lett. 2001 Jun 18;86(25):5723-6
pubmed: 11415342
Phys Rev Lett. 2012 May 25;108(21):215501
pubmed: 23003277
J Magn Reson. 2006 Jan;178(1):42-55
pubmed: 16188474
J Phys Condens Matter. 2019 Nov 6;31(44):444001
pubmed: 31311893