Prenatal diagnosis of acrania/exencephaly/anencephaly sequence (AEAS): additional structural and genetic anomalies.


Journal

Archives of gynecology and obstetrics
ISSN: 1432-0711
Titre abrégé: Arch Gynecol Obstet
Pays: Germany
ID NLM: 8710213

Informations de publication

Date de publication:
01 2023
Historique:
received: 21 01 2022
accepted: 17 04 2022
pubmed: 14 5 2022
medline: 17 1 2023
entrez: 13 5 2022
Statut: ppublish

Résumé

To analyse additional structural and genetic anomalies in fetuses with acrania/exencephaly/anencephaly sequence (AEAS). A retrospective analysis of 139 fetuses with AEAS diagnosed between 2006 and 2020 in a single tertiary referral ultrasound department. The median gestational age at diagnosis decreased from 15 weeks in 2006 to 13 weeks in 2020 (- 0.21 per each year; p = 0.009). In 103 fetuses, the defects were limited to the neural tube (NTD) (74.1%), in 36 fetuses (25.9%), there were additional structural non-NTD anomalies. The most common were ventral body wall defects present in 17.8% (23/139), followed by anomalies of the limbs (7.2%; 10/139), face (6.5%; 9/139) and heart (6.5%; 9/139). Genetic anomalies were diagnosed in 7 of the 74 conclusive results (9.5%; 7/74; trisomy 18, n = 5; triploidy, n = 1; duplication of Xq, n = 1). In univariate logistic regression models, male sex, limb anomalies and ventral body wall defects significantly increased the risk of genetic anomalies (OR 12.3; p = 0.024; OR 16.5; p = 0.002 and OR 10.4; p = 0.009, respectively). A significant number of fetuses with AEAS have additional structural non-NTD anomalies, which are mostly consistent with limb body wall complex. Genetic abnormalities are diagnosed in almost 10% of affected fetuses and trisomy 18 is the most common aberration. Factors that significantly increased the odds of genetic anomalies in fetuses with AEAS comprise male sex, limb anomalies and ventral body wall defects.

Identifiants

pubmed: 35554661
doi: 10.1007/s00404-022-06584-3
pii: 10.1007/s00404-022-06584-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

293-299

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Fleurke-Rozema JH, van Leijden L, van de Kamp K, Pajkrt E, Bilardo CM, Snijders RJ (2015) Timing of detection of anencephaly in The Netherlands. Prenat Diagn 35:483–485
doi: 10.1002/pd.4563
Timor-Tritsch IE, Greenebaum E, Monteagudo A, Baxi L (1996) Exencephaly-anencephaly sequence: proof by ultrasound imaging and amniotic fluid cytology. J Maternal Fetal Med 5:182–185
Matsumoto A, Hatta T, Moriyama K, Otani H (2002) Sequential observations of exencephaly and subsequent morphological changes by mouse exo utero development system: analysis of the mechanism of transformation from exencephaly to anencephaly. Anat Embryol 205:7–18
doi: 10.1007/s00429-001-0223-8
Ganchrow D, Ornoy A (1979) Possible evidence for secondary degeneration of central nervous system in the pathogenesis of anencephaly and brain dysgraphia: a study in young human fetuses. Virchows Arch A Pathol Anat Histol 384:285–294
doi: 10.1007/BF00428230
Campbell S, Johnstone FD, Holt EM, May P (1972) Anencephaly: early ultrasonic diagnosis and active management. Lancet 2(7789):1226–1227
doi: 10.1016/S0140-6736(72)92273-8
Cameron M, Moran P (2009) Prenatal screening and diagnosis of neural tube defects. Prenat Diagn 29:402
doi: 10.1002/pd.2250
Szkodziak P, Krzyżanowski J, Krzyżanowski A, Szkodziak F, Woźniak S, Czuczwar P, Kwaśniewska A, Paszkowski T (2020) The role of the “beret” sign and other markers in ultrasound diagnostic of the acrania-exencephaly-anencephaly sequence stages. Arch Gynecol Obstet 302(3):619–628. https://doi.org/10.1007/s00404-020-05650-y
doi: 10.1007/s00404-020-05650-y
Wertaschnigg D, Reddy M, Ramkrishna J, da Silva CF, Sepulveda W, Rolnik DL, Meagher S (2020) Ultrasound appearances of the acrania-anencephaly sequence at 10–14 weeks’ gestation. J Ultrasound Med 39(9):1695–1700
doi: 10.1002/jum.15267
Santana EFM, Araujo Junior E, Tonni G, Costa FDS, Meagher S (2018) Acrania-exencephaly-anencephaly sequence phenotypic characterization using two- and three-dimensional ultrasound between 11 and 13 weeks and 6 days of gestation. J Ultrason 18:240–246
doi: 10.15557/JoU.2018.0035
Salomon LJ, Alfirevic Z, Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL et al (2011) Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 37(1):116–126
doi: 10.1002/uog.8831
Bijok J, Kucińska-Chahwan A, Massalska D, Ilnicka A, Panek G, Roszkowski T (2020) In-house genetic counseling increases the detection of abnormal karyotypes-a 26-year experience in prenatal diagnosis in a single tertiary referral hospital in Poland. J Assist Reprod Genet 37(8):1999–2006
doi: 10.1007/s10815-020-01812-8
Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE et al (2009) Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 85(4):457–464
doi: 10.1016/j.ajhg.2009.09.003
Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S et al (2017) The human phenotype ontology in 2017. Nucleic Acids Res 45(D1):D865–D876
doi: 10.1093/nar/gkw1039
Johnson SP, Sebire NJ, Snijders RJ, Tunkel S, Nicolaides KH (1997) Ultrasound screening for anencephaly at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 9:14–16
doi: 10.1046/j.1469-0705.1997.09010014.x
Syngelaki A, Chelemen T, Dagklis T, Allan L, Nicolaides KH (2011) Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks. Prenat Diagn 31:90–102
doi: 10.1002/pd.2642
Petousis S, Sotiriadis A, Margioula-Siarkou C, Tsakiridis I, Christidis P, Kyriakakis M, Mamopoulos A, Athanasiadis A, Dagklis T (2020) Detection of structural abnormalities in fetuses with normal karyotype at 11–13 weeks using the anatomic examination protocol of the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). J Matern Fetal Neonatal Med 33(15):2581–2587
doi: 10.1080/14767058.2018.1555807
Struksnæs C, Blaas HK, Vogt C (2019) Autopsy findings of central nervous system anomalies in intact fetuses following termination of pregnancy after prenatal ultrasound diagnosis. Pediatr Dev Pathol 22(6):546–557
doi: 10.1177/1093526619860385
Stoll C, Dott B, Alembik Y, Roth M-P (2011) Associated malformations among infants with neural tube defects. Am J Med Genet Part A 155:565–568
doi: 10.1002/ajmg.a.33886
Entezami M, Albig M (2004) Gasiorek. Spina bifida aperta, (myelo-) meningocele. In: Wiens A, Becker R (eds) Ultrasound diagnosis of fetal anomalies. Georg Thieme Verlag, Stuttgart, pp 51–56
Hrgovic Z, Panitz HG, Kurjak A, Jurkovic D (1989) Contribution to the recognition of iniencephaly on the basis of a new case. J Perinat Med 17:375–379
Guala A, Massa P, Foscolo AM, Olivero F, Van Maldergem L, Danesino C (2013) Association of iniencephaly, anencephaly, and fusion of cervical vertebral bodies: a new autosomal recessive syndrome? Clin Dysmorphol 22(1):29–32
doi: 10.1097/MCD.0b013e3283590b04
Van Allen MI, Curry C, Gallagher L (1987) Limb body wall complex: I Pathogenesis. Am J Med Genet 28(3):529–548
doi: 10.1002/ajmg.1320280302
Goldstein I, Winn HN, Hobbins JC (1989) Prenatal diagnostic criteria for body stalk anomaly. Am J Perinatol 6(1):84–85
doi: 10.1055/s-2007-999552
Bijok J, Massalska D, Kucińska-Chahwan A et al (2017) Complex malformations involving the fetal body wall—definition and classification issues. Prenat Diagn 37(10):1033–1039
doi: 10.1002/pd.5141
Russo R, D’Armiento M, Angrisani P, Vecchione R (1993) Limb body wall complex: a critical review and a nosological proposal. Am J Med Genet 47(6):893–900
doi: 10.1002/ajmg.1320470617
Yazici LE, Malatyalioglu E, Sakinci M et al (2012) Chromosomal anomalies and additional sonographic findings in fetuses with open neural tube defects. Arch Gynecol Obstet 286(6):1393–1398
doi: 10.1007/s00404-012-2469-1
Kennedy D, Chitayat D (1998) Winsor EJT Prenatally diagnosed neural tube defects: ultrasound, chromosome and autopsy or postnatal findings in 212 cases. Am J Med Genet 77:317–321
doi: 10.1002/(SICI)1096-8628(19980526)77:4<317::AID-AJMG13>3.0.CO;2-L
Sepulveda W, Corral E, Ayala C, Be C, Gutierrez J, Vasquez P (2004) Chromosomal abnormalities in fetuses with open neural tube defects: prenatal identification with ultrasound. Ultrasound Obstet Gynecol 23(4):352–356
doi: 10.1002/uog.964
Akolekar R, Beta J, Picciarelli G et al (2015) Procedure—related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45(1):16–26
doi: 10.1002/uog.14636
Neural tube defects, Practice Bulletin No. 187. American College of Obstetricians and Gynecologists. Obstet Gynecol 2017;130:e279–90
Chen CP (2007) Chromosomal abnormalities associated with omphalocele. Taiwan J Obstet Gynecol 46:1–8
doi: 10.1016/S1028-4559(08)60099-6
Tobin M, Gunaji R, Walsh JC, Grice GP (2019) A review of genetic factors underlying craniorachischisis and omphalocele: inspired by a unique trisomy 18 case. Am J Med Genet Part A 179A:1642–1651
Moore CA, Harmon JP, Padilla LM, Castro VB, Weaver DD (1988) Neural tube defects and omphalocele in trisomy 18. Clin Genet 34(2):98–103
doi: 10.1111/j.1399-0004.1988.tb02843.x
Van Maldergem LMD, Gillerot YMD, Koulischer LMD (1989) Neural tube defects and omphalocele in trisomy 18. Clin Genet 1989(35):77–79
Chen C-P (2007) Chromosomal abnormalities associated with neural tube defects: full aneuploidy. Taiwan J Obstet Gynecol 46(4):325–335
doi: 10.1016/S1028-4559(08)60002-9
Harper MA, Ruiz C, Pettenati MJ, Rao PN (1994) Triploid partial molar pregnancy detected through maternal serum alpha-fetoprotein and HCG screening. Obstet Gynecol 83(5 Pt 2):844–846
Babcook CJ, Goldstein RB, Filly RA (1995) Prenatally detected fetal myelomeningocele: is karyotype analysis warranted? Radiology 194(2):491–494
doi: 10.1148/radiology.194.2.7824730
Philipp T, Grillenberger K, Separovic ER, Philipp K, Kalousek DK (2004) Effects of triploidy on early human development. Prenat Diagn 24(4):276–281
doi: 10.1002/pd.789
Massalska D, Bijok J, Ilnicka A, Jakiel G, Roszkowski T (2017) Triploidy—variability of sonographic phenotypes. Prenat Diagn 37(8):774–780
doi: 10.1002/pd.5080
Plaja A, Vendrell T, Sarret E, Toran N, Mediano C (1994) Terminal deletion of Xp in a dysmorphic anencephalic fetus. Prenat Diagn 14:410–412
doi: 10.1002/pd.1970140512
Hol FA, Geurds MP, Chatkupt S et al (1996) PAX genes and human neural tube defects: an amino acid substitution in PAX1 in a patient with spina bifida. J Med Genet 33:655–660
doi: 10.1136/jmg.33.8.655
Lord J, McMullan DJ, Eberhardt RY et al (2019) Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (2): a cohort study. Lancet 393(10173):747–757
doi: 10.1016/S0140-6736(18)31940-8
Petrovski S, Aggarwal V, Giordano JL et al (2019) Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 393:758–767
doi: 10.1016/S0140-6736(18)32042-7
Becher N, Andreasen L, Sandager P et al (2020) Implementation of exome sequencing in fetal diagnostics-data and experiences from a tertiary center in Denmark. Acta Obstet Gynecol Scand 99(6):783–790
doi: 10.1111/aogs.13871
Quinlan-Jones E, Kilby MD, Greenfield S et al (2016) Prenatal whole exome sequencing: the views of clinicians, scientists, genetic counsellors and patient representatives. Prenat Diagn 36:935–941
doi: 10.1002/pd.4916
Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS (2018) Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn 38(1):10–19
doi: 10.1002/pd.5102
Wang L, Ren A, Tian T, Li N, Cao X, Zhang P, Jin L, Li Z, Shen Y, Zhang B, Finnell RH, Lei Y (2019) Whole-exome sequencing identifies damaging de novo variants in anencephalic cases. Front Neurosci 29(13):1285
doi: 10.3389/fnins.2019.01285
Seeds JW, Cefalo RC, Herbert WN (1982) Amniotic band syndrome. Am J Obstet Gynecol 144(3):243–248
doi: 10.1016/0002-9378(82)90574-9

Auteurs

Julia Bijok (J)

Department of Gynecologic Oncology and Obstetrics, Professor Witold Orlowski Public Teaching Hospital, Warsaw, Poland. julia.bijok@gmail.com.
Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, ul. Czerniakowska 231, 00413, Warsaw, Poland. julia.bijok@gmail.com.

Sylwia Dąbkowska (S)

Department of Gynecologic Oncology and Obstetrics, Professor Witold Orlowski Public Teaching Hospital, Warsaw, Poland.

Anna Kucińska-Chahwan (A)

Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland.

Diana Massalska (D)

Department of Gynecologic Oncology and Obstetrics, Professor Witold Orlowski Public Teaching Hospital, Warsaw, Poland.
Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, ul. Czerniakowska 231, 00413, Warsaw, Poland.

Beata Nowakowska (B)

Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland.

Sylwia Gawlik-Zawiślak (S)

Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.

Grzegorz Panek (G)

Department of Gynecologic Oncology and Obstetrics, Professor Witold Orlowski Public Teaching Hospital, Warsaw, Poland.
Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, ul. Czerniakowska 231, 00413, Warsaw, Poland.

Tomasz Roszkowski (T)

Department of Gynecologic Oncology and Obstetrics, Professor Witold Orlowski Public Teaching Hospital, Warsaw, Poland.
Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, ul. Czerniakowska 231, 00413, Warsaw, Poland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH