QTL mapping of drought-related traits in the hybrids of Populus deltoides 'Danhong'×Populus simonii 'Tongliao1'.
Coexpression network
Crossbreeding
Drought stress
Drought-related traits
Populus
QTL mapping
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
11 May 2022
11 May 2022
Historique:
received:
28
05
2021
accepted:
21
04
2022
entrez:
11
5
2022
pubmed:
12
5
2022
medline:
17
5
2022
Statut:
epublish
Résumé
Poplar trees provide a large amount of wood material, but many parts of the world are arid or semi-arid areas because of insufficient annual precipitation, which seriously affects the growth of poplar trees. Populus simonii 'Tongliao1' shows strong tolerance to stress environments, and Populus deltoides 'Danhong' shows a stronger growth rate in a suitable environment. To identify drought tolerance-related QTLs and genes, an F We measured drought-related traits such as the relative height growth, relative diameter growth, leaf senescence number, specific leaf area, and leaf relative water content in the population under control and drought environments. The results showed that drought stress reduced the plant height relative growth, ground diameter relative growth, specific leaf area and leaf relative water content and increased the number of leaf drops. A total of 208 QTLs were identified by QTL mapping analysis, and they consisted of 92, 63 and 53 QTLs under control, drought stress treatment and drought index conditions, respectively. A molecular identification marker for drought tolerance, np2841, which was associated with a QTL (qDLRWC-LG10-1) for relative leaf water content, was initially developed. We mined 187 candidate genes for QTL regions of five traits under a drought environment. The reference genome annotation for Populus trichocarpa and a homologous gene analysis of Arabidopsis thaliana identified two candidate genes, Potri.003G171300 and Potri.012G123900, with significant functions in response to drought stress. We identified five key regulatory genes (Potri.006G273500, Potri.007G111500, Potri.007G111600, Potri.007G111700, and Potri.007G111800) related to drought tolerance through the poplar coexpression network. In this study, our results indicate that the QTLs can effectively enhance the drought tolerance of poplar. It is a step closer towards unravelling the genetic basis of poplar drought tolerance-related traits, and to providing validated candidate genes and molecular markers for future genetic improvement.
Sections du résumé
BACKGROUND
BACKGROUND
Poplar trees provide a large amount of wood material, but many parts of the world are arid or semi-arid areas because of insufficient annual precipitation, which seriously affects the growth of poplar trees. Populus simonii 'Tongliao1' shows strong tolerance to stress environments, and Populus deltoides 'Danhong' shows a stronger growth rate in a suitable environment. To identify drought tolerance-related QTLs and genes, an F
RESULTS
RESULTS
We measured drought-related traits such as the relative height growth, relative diameter growth, leaf senescence number, specific leaf area, and leaf relative water content in the population under control and drought environments. The results showed that drought stress reduced the plant height relative growth, ground diameter relative growth, specific leaf area and leaf relative water content and increased the number of leaf drops. A total of 208 QTLs were identified by QTL mapping analysis, and they consisted of 92, 63 and 53 QTLs under control, drought stress treatment and drought index conditions, respectively. A molecular identification marker for drought tolerance, np2841, which was associated with a QTL (qDLRWC-LG10-1) for relative leaf water content, was initially developed. We mined 187 candidate genes for QTL regions of five traits under a drought environment. The reference genome annotation for Populus trichocarpa and a homologous gene analysis of Arabidopsis thaliana identified two candidate genes, Potri.003G171300 and Potri.012G123900, with significant functions in response to drought stress. We identified five key regulatory genes (Potri.006G273500, Potri.007G111500, Potri.007G111600, Potri.007G111700, and Potri.007G111800) related to drought tolerance through the poplar coexpression network.
CONCLUSION
CONCLUSIONS
In this study, our results indicate that the QTLs can effectively enhance the drought tolerance of poplar. It is a step closer towards unravelling the genetic basis of poplar drought tolerance-related traits, and to providing validated candidate genes and molecular markers for future genetic improvement.
Identifiants
pubmed: 35545765
doi: 10.1186/s12870-022-03613-w
pii: 10.1186/s12870-022-03613-w
pmc: PMC9092850
doi:
Substances chimiques
Drugs, Chinese Herbal
0
danhong
0
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
238Subventions
Organisme : National Key Research and Development Program of China
ID : 2021YFD2200201
Organisme : National Key Research and Development Program of China
ID : 2021YFD2200201
Organisme : National Key Research and Development Program of China
ID : 2021YFD2200201
Organisme : National Key Research and Development Program of China
ID : 2021YFD2200201
Organisme : National Key Research and Development Program of China
ID : 2021YFD2200201
Organisme : National Key Research and Development Program of China
ID : 2021YFD2200201
Organisme : National Natural Science Foundation
ID : 32071797, 31570669
Organisme : National Natural Science Foundation
ID : 32071797, 31570669
Organisme : National Natural Science Foundation
ID : 32071797, 31570669
Organisme : National Natural Science Foundation
ID : 32071797, 31570669
Organisme : National Natural Science Foundation
ID : 32071797, 31570669
Organisme : National Natural Science Foundation
ID : 32071797, 31570669
Organisme : National Key Program on Transgenic Research
ID : 2018ZX08020002
Organisme : National Key Program on Transgenic Research
ID : 2018ZX08020002
Organisme : National Key Program on Transgenic Research
ID : 2018ZX08020002
Organisme : National Key Program on Transgenic Research
ID : 2018ZX08020002
Organisme : National Key Program on Transgenic Research
ID : 2018ZX08020002
Organisme : National Key Program on Transgenic Research
ID : 2018ZX08020002
Informations de copyright
© 2022. The Author(s).
Références
Int J Mol Sci. 2019 Dec 04;20(24):
pubmed: 31817197
Plant Physiol. 2013 May;162(1):424-39
pubmed: 23530184
Planta. 2003 Nov;218(1):1-14
pubmed: 14513379
Theor Appl Genet. 2004 Nov;109(8):1648-59
pubmed: 15490107
Plant Mol Biol. 2002 Mar-Apr;48(5-6):683-95
pubmed: 11999843
Plant Biotechnol J. 2018 Aug;16(8):1514-1528
pubmed: 29406575
Genet Res (Camb). 2011 Oct;93(5):343-9
pubmed: 21878144
New Phytol. 2016 Feb;209(3):1067-82
pubmed: 26499329
Plant Physiol. 2017 Mar;173(3):1554-1564
pubmed: 28153923
Int J Plant Genomics. 2008;2008:619832
pubmed: 18483572
Sci Rep. 2016 Aug 12;6:31356
pubmed: 27515999
J Exp Bot. 2020 Feb 19;71(4):1503-1513
pubmed: 31665748
Huan Jing Ke Xue. 2021 Feb 8;42(2):1004-1012
pubmed: 33742897
Annu Rev Plant Biol. 2007;58:435-58
pubmed: 17280524
FEBS Lett. 2001 Mar 2;491(3):188-92
pubmed: 11240125
Theor Appl Genet. 2004 Apr;108(6):969-81
pubmed: 15067382
Curr Opin Plant Biol. 2006 Dec;9(6):631-8
pubmed: 17005440
Front Plant Sci. 2020 Nov 11;11:528550
pubmed: 33304356
BMC Plant Biol. 2009 Feb 26;9:23
pubmed: 19245718
Plant Biotechnol J. 2016 Mar;14(3):849-60
pubmed: 26228739
Front Plant Sci. 2019 Nov 13;10:1399
pubmed: 31798601
Glob Chang Biol. 2015 May;21(5):1968-79
pubmed: 25393098
Mol Genet Genomics. 2015 Apr;290(2):559-71
pubmed: 25344290
BMC Plant Biol. 2017 Nov 28;17(1):224
pubmed: 29179673
Theor Appl Genet. 2005 Feb;110(3):537-49
pubmed: 15619077
Sci Rep. 2016 Feb 15;6:21031
pubmed: 26875529
Plant Cell. 2013 Nov;25(11):4324-41
pubmed: 24280390
Plant J. 2006 Nov;48(3):321-41
pubmed: 17005011
Theor Appl Genet. 2002 Jan;104(1):67-83
pubmed: 12579430
Sci Rep. 2015 Oct 19;5:15296
pubmed: 26478518
Plant Biotechnol J. 2019 Jan;17(1):206-219
pubmed: 29851301
Science. 2006 Sep 15;313(5793):1596-604
pubmed: 16973872
Plant Cell Physiol. 2011 Jan;52(1):138-48
pubmed: 21097474
Int J Mol Sci. 2019 Mar 21;20(6):
pubmed: 30901839
Tree Physiol. 2006 May;26(5):595-604
pubmed: 16452073
PLoS One. 2014 Apr 15;9(4):e95176
pubmed: 24736620
Sci Rep. 2021 Jan 8;11(1):189
pubmed: 33420305
PLoS One. 2014 May 21;9(5):e98300
pubmed: 24847851
New Phytol. 2009 Jan;181(2):315-322
pubmed: 19121030
Mol Biol Evol. 2016 Oct;33(10):2706-19
pubmed: 27499133
Mol Plant. 2011 Jan;4(1):190-7
pubmed: 21059694
Plant J. 2017 Jun;90(5):918-928
pubmed: 28244225
Plant Physiol. 2008 Oct;148(2):1117-27
pubmed: 18701672
Genetics. 1994 Aug;137(4):1121-37
pubmed: 7982566
Bioinformatics. 2015 Jul 1;31(13):2123-30
pubmed: 25717192
Sci Rep. 2015 Oct 28;5:15183
pubmed: 26507552
Physiol Plant. 2008 Sep;134(1):110-20
pubmed: 18435822
Genetics. 1995 Feb;139(2):963-73
pubmed: 7713445
BMC Genomics. 2017 May 8;18(1):355
pubmed: 28482802
PLoS One. 2016 Mar 29;11(3):e0152569
pubmed: 27022954
Physiol Plant. 2020 Mar;168(3):531-546
pubmed: 31637725
Tree Physiol. 2017 Dec 1;37(12):1713-1726
pubmed: 28985414
Biochem Biophys Res Commun. 2012 Oct 19;427(2):330-5
pubmed: 23000164