Taxonomic and functional trait-based approaches suggest that aerobic and anaerobic soil microorganisms allow the natural attenuation of oil from natural seeps.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 05 2022
04 05 2022
Historique:
received:
16
11
2021
accepted:
31
03
2022
entrez:
4
5
2022
pubmed:
5
5
2022
medline:
7
5
2022
Statut:
epublish
Résumé
Natural attenuation, involving microbial adaptation, helps mitigating the effect of oil contamination of surface soils. We hypothesized that in soils under fluctuating conditions and receiving oil from seeps, aerobic and anaerobic bacteria as well as fungi could coexist to efficiently degrade hydrocarbons and prevent the spread of pollution. Microbial community diversity was studied in soil longitudinal and depth gradients contaminated with petroleum seeps for at least a century. Hydrocarbon contamination was high just next to the petroleum seeps but this level drastically lowered from 2 m distance and beyond. Fungal abundance and alpha-diversity indices were constant along the gradients. Bacterial abundance was constant but alpha-diversity indices were lower next to the oil seeps. Hydrocarbon contamination was the main driver of microbial community assemblage. 281 bacterial OTUs were identified as indicator taxa, tolerant to hydrocarbon, potentially involved in hydrocarbon-degradation or benefiting from the degradation by-products. These taxa belonging to lineages of aerobic and anaerobic bacteria, have specific functional traits indicating the development of a complex community adapted to the biodegradation of petroleum hydrocarbons and to fluctuating conditions. Fungi are less impacted by oil contamination but few taxa should contribute to the metabolic complementary within the microbial consortia forming an efficient barrier against petroleum dissemination.
Identifiants
pubmed: 35508504
doi: 10.1038/s41598-022-10850-4
pii: 10.1038/s41598-022-10850-4
pmc: PMC9068923
doi:
Substances chimiques
Hydrocarbons
0
Petroleum
0
Soil
0
Soil Pollutants
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7245Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Sarkar, D., Ferguson, M., Datta, R. & Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136(1), 187–195 (2005).
pubmed: 15809120
doi: 10.1016/j.envpol.2004.09.025
Vergani, L. et al. Bacteria associated to plants naturally selected in a historical PCB polluted soil show potential to sustain natural attenuation. Front. Microbiol. 8, 1385 (2017).
pubmed: 28790991
pmcid: 5524726
doi: 10.3389/fmicb.2017.01385
Kachienga, L., Jitendra, K. & Momba, M. Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum-contaminated water aquifers. Sci. Rep. 8(1), 1–6 (2018).
doi: 10.1038/s41598-018-25961-0
Ferguson, D. K. et al. Natural attenuation of spilled crude oil by cold-adapted soil bacterial communities at a decommissioned High Arctic oil well site. Sci. Total Environ. 722, 1358 (2020).
doi: 10.1016/j.scitotenv.2020.137258
Kleikemper, J. et al. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 68(4), 1516–1523 (2002).
pubmed: 11916663
pmcid: 123867
doi: 10.1128/AEM.68.4.1516-1523.2002
Hazen, T. C. et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001), 204–208 (2010).
pubmed: 20736401
doi: 10.1126/science.1195979
Kostka, J. E. et al. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl. Environ. Microbiol. 77(22), 7962–7974 (2011).
pubmed: 21948834
pmcid: 3208977
doi: 10.1128/AEM.05402-11
Spini, G. et al. Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Front. Microbiol. 9, 2543 (2018).
pubmed: 30425689
pmcid: 6218658
doi: 10.3389/fmicb.2018.02543
Higashioka, Y., Kojima, H., Sato, S. & Fukui, M. Microbial community analysis at crude oil-contaminated soils targeting the 16S ribosomal RNA, xylM, C23O, and bcr genes. J. Appl. Microbiol. 107(1), 126–135 (2009).
pubmed: 19298506
doi: 10.1111/j.1365-2672.2009.04198.x
Habe, H. & Omori, T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67(2), 225–243 (2003).
pubmed: 12728980
doi: 10.1271/bbb.67.225
Abbasian, F., Lockington, R., Mallavarapu, M. & Naidu, R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol. 176(3), 670–699 (2015).
pubmed: 25935219
doi: 10.1007/s12010-015-1603-5
Liu, Q. et al. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci. Rep. 7(1), 1–12 (2017).
Ghosal, D., Ghosh, S., Dutta, T. K. & Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front. Microbiol. 7, 1369 (2016).
pubmed: 27630626
pmcid: 5006600
Aitken, C. M., Jones, D. M. & Larter, S. R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431(7006), 291–294 (2004).
pubmed: 15372028
doi: 10.1038/nature02922
Burland, S. M. & Edwards, E. A. Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65(2), 529–533 (1999).
pubmed: 9925578
pmcid: 91057
doi: 10.1128/AEM.65.2.529-533.1999
Ahad, J. M. et al. Carbon isotope fractionation during anaerobic biodegradation of toluene: implications for intrinsic bioremediation. Environ. Sci. Technol. 34(5), 892–896 (2000).
doi: 10.1021/es990797y
Chang, B. V., Shiung, L. C. & Yuan, S. Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48(7), 717–724 (2002).
pubmed: 12201202
doi: 10.1016/S0045-6535(02)00151-0
Coates, J. D. et al. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63(9), 3589–3593 (1997).
pubmed: 9341091
pmcid: 168665
doi: 10.1128/aem.63.9.3589-3593.1997
Cozzarelli, I. M., Herman, J. S. & Baedecker, M. J. Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors. Environ. Sci. Technol. 29(2), 458–469 (1995).
pubmed: 22201393
doi: 10.1021/es00002a023
Cravo-Laureau, C. et al. Role of environmental fluctuations and microbial diversity in degradation of hydrocarbons in contaminated sludge. Res. Microbiol. 162(9), 888–895 (2011).
pubmed: 21530651
doi: 10.1016/j.resmic.2011.04.011
Gieg, L. M., Fowler, S. J. & Berdugo-Clavijo, C. Syntrophic biodegradation of hydrocarbon contaminants. Curr. Opin. Biotechnol. 27, 21–29 (2014).
pubmed: 24863893
doi: 10.1016/j.copbio.2013.09.002
Fernandez-Luqueno, F. et al. Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenge: a review. Environ. Sci. Pollut. R. 18, 12–30 (2010).
doi: 10.1007/s11356-010-0371-6
Cerniglia, C. E. & Sutherland, J. B. Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation. Fungi Biogeochem. Cycles 24(182), 1 (2006).
Jacques, R. J. et al. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Biores. Technol. 99(7), 2637–2643 (2008).
doi: 10.1016/j.biortech.2007.04.047
Cébron, A. et al. Experimental increase in availability of a PAH complex organc contamination from an aged contaminated soil: Consequences on biodegradation. Environ. Pollut. 177, 98–105 (2013).
pubmed: 23500046
doi: 10.1016/j.envpol.2013.01.043
Biache, C. et al. Effects of thermal desorption on the composition of two coking plant soils: Impact on solvent extractable organic compounds and metal bioavailability. Environ. Pollut. 156, 671–677 (2008).
pubmed: 18674850
doi: 10.1016/j.envpol.2008.06.020
Usman, M., Hanna, K. & Faure, P. Remediation of oil-contaminated harbor sediments by chemical oxidation. Sci. Total Environ. 634, 1100–1107 (2018).
pubmed: 29660866
doi: 10.1016/j.scitotenv.2018.04.092
Colombo, J. C., Pelletier, E., Brochu, C. & Khalil, M. Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata estuary. Argentina. Environ. Sci. Technol. 23, 888–894 (1989).
doi: 10.1021/es00065a019
Bray, E. E. & Evans, E. D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15 (1961).
doi: 10.1016/0016-7037(61)90069-2
Cébron, A., Norini, M. P., Beguiristain, T. & Leyval, C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil sediment samples. J. Microbiol. Methods 73, 148–159 (2008).
pubmed: 18329116
doi: 10.1016/j.mimet.2008.01.009
Thion, C., Cébron, A., Beguiristain, T. & Leyval, C. Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiol. Ecol. 82(1), 169–181 (2012).
pubmed: 22587649
doi: 10.1111/j.1574-6941.2012.01414.x
Powell, S. M., Ferguson, S. H., Bowman, J. P. & Snape, I. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb. Ecol. 52(3), 523–532 (2006).
pubmed: 16944337
doi: 10.1007/s00248-006-9131-z
Gielnik, A. et al. Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. J. Environ. Manag. 280, 1148 (2021).
doi: 10.1016/j.jenvman.2020.111648
Winderl, C., Anneser, B., Griebler, C., Meckenstock, R. U. & Lueders, T. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl. Environ. Microbiol. 74(3), 792–801 (2008).
pubmed: 18083871
doi: 10.1128/AEM.01951-07
Kozich, J. J. et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79(17), 5112–5120 (2013).
pubmed: 23793624
pmcid: 3753973
doi: 10.1128/AEM.01043-13
Thomas, F. & Cébron, A. Short-term rhizosphere effect on available carbon sources, phenanthrene degradation, and active microbiome in an aged-contaminated industrial soil. Front. Microbiol. 7, 92 (2016).
pubmed: 26903971
pmcid: 4742875
doi: 10.3389/fmicb.2016.00092
Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104(8), 927–936 (2000).
doi: 10.1017/S0953756200002471
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537–7541 (2009).
pubmed: 19801464
pmcid: 2786419
doi: 10.1128/AEM.01541-09
Cébron, A. et al. BactoTraits–A functional trait database to evaluate how natural and man-induced changes influence the assembly of bacterial communities. Ecol. Indicat. 130, 108047 (2021).
doi: 10.1016/j.ecolind.2021.108047
Aßhauer, K. P. et al. Tax4Fun: Predicting functional proles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
pubmed: 25957349
pmcid: 4547618
doi: 10.1093/bioinformatics/btv287
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019).
Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.5–6. (2019).
Marra, G. & Wood, S. N. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55(7), 2372–2387 (2011).
doi: 10.1016/j.csda.2011.02.004
Baker, M. E. & King, R. S. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol. Evol. 1(1), 25–37 (2010).
doi: 10.1111/j.2041-210X.2009.00007.x
Baker, M. E., King, R. S., Kahle, D., & Kahle, M. D. Package ‘TITAN2’. (2015).
Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3), 345–366 (1997).
Wang, X., Feng, J. & Zhao, J. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environ. Monit. Assess. 161(1), 271–280 (2010).
pubmed: 19184478
doi: 10.1007/s10661-008-0744-1
Sun, W. et al. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity. J. Microbiol. 53(6), 371–378 (2015).
pubmed: 26025169
doi: 10.1007/s12275-015-5023-6
Cébron, A. et al. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ. Microbiol. 13(3), 722–736 (2011).
pubmed: 21087382
doi: 10.1111/j.1462-2920.2010.02376.x
Thomas, F., Corre, E. & Cébron, A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME J. 13(7), 1814–1830 (2019).
pubmed: 30872807
pmcid: 6775975
doi: 10.1038/s41396-019-0394-z
Yang, S. et al. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep. 6(1), 1–13 (2016).
Yang, S., Wen, X., Zhao, L., Shi, Y. & Jin, H. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia crude oil pipeline route. PLoS ONE 9(5), e9652 (2014).
Sutton, N. B. et al. Impact of long-term diesel contamination on soil microbial community structure. Appl. Environ. Microbiol. 79(2), 619–630 (2013).
pubmed: 23144139
pmcid: 3553749
doi: 10.1128/AEM.02747-12
Paissé, S. et al. Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol. Ecol. 66(2), 295–305 (2008).
pubmed: 18803671
doi: 10.1111/j.1574-6941.2008.00589.x
Abed, R. M., Al-Kindi, S. & Al-Kharusi, S. Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb. Ecol. 69(1), 95–105 (2015).
pubmed: 25103912
doi: 10.1007/s00248-014-0475-5
Cury, J. C. et al. Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarct. Sci. 27(3), 263–273 (2015).
doi: 10.1017/S0954102014000728
Ferrari, B. C., Zhang, C. D. & Van Dorst, J. Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front. Microbiol. https://doi.org/10.3389/fmicb2011.00217 (2011).
doi: 10.3389/fmicb2011.00217
pubmed: 22131985
pmcid: 3219075
Moktali, V. et al. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genom. 13, 1. https://doi.org/10.1186/1471-2164-13-525 (2012).
doi: 10.1186/1471-2164-13-525
Daccò, C. et al. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. Int. Biodeteriorat. Biodegrad. 147, 1066 (2020).
doi: 10.1016/j.ibiod.2019.104866
Liu, P. W. G. et al. Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. Int. Biodeterior. Biodegradation 65(8), 1119–1127 (2011).
doi: 10.1016/j.ibiod.2011.09.002
Kelly, D. P. & Wood, A. P. The family Acidithiobacillaceae. The prokaryotes. Gammaproteobacteria 4, 15–25 (2014).
Yagi, J. M. et al. Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community. ISME J. 4(1), 131–143 (2010).
pubmed: 19776766
doi: 10.1038/ismej.2009.101
Chakraborty, R., O’Connor, S. M., Chan, E. & Coates, J. D. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl. Environ. Microbiol. 71(12), 8649–8655 (2005).
pubmed: 16332859
pmcid: 1317370
doi: 10.1128/AEM.71.12.8649-8655.2005
Keller, A. H., Kleinsteuber, S. & Vogt, C. Anaerobic benzene mineralization by nitrate-reducing and sulfate-reducing microbial consortia enriched from the same site: comparison of community composition and degradation characteristics. Microb. Ecol. 75(4), 941–953 (2018).
pubmed: 29124312
doi: 10.1007/s00248-017-1100-1
Sperfeld, M., Diekert, G. & Studenik, S. Anaerobic aromatic compound degradation in Sulfuritalea hydrogenivorans sk43H. FEMS Microbiol. Ecol. 95(1), 199 (2019).
Salinero, K. K. et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: Indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genom. 10(1), 351 (2009).
doi: 10.1186/1471-2164-10-351
Watanabe, T., Kojima, H. & Fukui, M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst. Appl. Microbiol. 37(6), 387–395 (2014).
pubmed: 25017294
doi: 10.1016/j.syapm.2014.05.010
Roy, A. et al. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations. BMC Microbiol. 18(1), 151 (2018).
pubmed: 30348104
pmcid: 6198496
doi: 10.1186/s12866-018-1275-8
Tan, B., Dong, X., Sensen, C. W. & Foght, J. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56(10), 599–611 (2013).
pubmed: 24237341
doi: 10.1139/gen-2013-0069
Gutierrez, T., Nichols, P. D., Whitman, W. B. & Aitken, M. D. Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl. Environ. Microbiol. 78(3), 628–637 (2012).
pubmed: 22139001
pmcid: 3264135
doi: 10.1128/AEM.06398-11
Knapik, K., Bagi, A., Krolicka, A., & Baussant, T. Discovery of functional gene markers of bacteria for monitoring hydrocarbon pollution in the marine environment - a metatranscriptomics approach. bioRxiv, 857391 (2019).
Ribicic, D. et al. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar. Pollut. Bull. 129(1), 370–378 (2018).
pubmed: 29680562
doi: 10.1016/j.marpolbul.2018.02.034
Corteselli, E. M., Aitken, M. D. & Singleton, D. R. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. Nov.. Int. J. Syst. Evol. Microbiol. 67(4), 925 (2017).
pubmed: 27926817
pmcid: 5817195
doi: 10.1099/ijsem.0.001714
Kanaly, R. A., Harayama, S. & Watanabe, K. Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl. Environ. Microbiol. 68(12), 5826–5833 (2002).
pubmed: 12450801
pmcid: 134403
doi: 10.1128/AEM.68.12.5826-5833.2002
Dominguez, J. J. A., Inoue, C. & Chien, M. F. Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH-and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 387, 1295 (2020).
doi: 10.1016/j.jhazmat.2019.121695
Roslund, M. I. et al. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ 1, 1–27 (2018).
Nayak, A. S., Sanjeev Kumar, S., Anjaneya, O. & Karegoudar, T. B. A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp.: PNK-04. FEMS Microbiol. Lett. 320(2), 128–134 (2011).
pubmed: 21545490
doi: 10.1111/j.1574-6968.2011.02301.x
Patel, V., Cheturvedula, S. & Madamwar, D. Phenanthrene degradation by Pseudoxanthomonas sp DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J. Hazard. Mater. 201, 43–51 (2012).
pubmed: 22169141
doi: 10.1016/j.jhazmat.2011.11.002
Choi, E. J. et al. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 79(2), 663–671 (2013).
pubmed: 23160122
pmcid: 3553784
doi: 10.1128/AEM.02809-12
Nayak, A. S., Vijaykumar, M. H. & Karegoudar, T. B. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int. Biodeteriorat. Biodegrad. 63(1), 73–79 (2009).
doi: 10.1016/j.ibiod.2008.07.003
Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).
pubmed: 26696968
pmcid: 4678205
doi: 10.3389/fmicb.2015.01346
Schleheck, D. et al. Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1 T). Stand Genom. Sci. 5(3), 298–310 (2011).
doi: 10.4056/sigs.2215005
Alonso-Gutiérrez, J. et al. Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl. Environ. Microbiol. 75(11), 3407–3418 (2009).
pubmed: 19376924
pmcid: 2687268
doi: 10.1128/AEM.01776-08
Lai, Q. et al. Parvibaculum indicum sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 61(2), 271–274 (2011).
pubmed: 20228216
doi: 10.1099/ijs.0.021899-0
Obuekwe, C. O., Al-Jadi, Z. K. & Al-Saleh, E. S. Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeterior. Biodegradation 63(3), 273–279 (2009).
doi: 10.1016/j.ibiod.2008.10.004
Blanco-Enríquez, E. G. et al. Characterization of a microbial consortium for the bioremoval of polycyclic aromatic hydrocarbons (PAHs) in water. Int. J. Environ. Res. Public Health 15(5), 975 (2018).
pmcid: 5982014
doi: 10.3390/ijerph15050975
Radwan, S. S., Al-Awadhi, H., Sorkhoh, N. A. & El-Nemr, I. M. Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oil Kuwaiti desert. Microbiol. Res. 153(3), 247–251 (1998).
doi: 10.1016/S0944-5013(98)80007-4
Arli, S. D., Trivedi, U. B. & Patel, K. C. Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates. World J. Microbiol. Biotechnol. 27(6), 1415–1422 (2011).
pubmed: 25187141
doi: 10.1007/s11274-010-0593-2
Parab, V. & Phadke, M. Co-biodegradation studies of naphthalene and phenanthrene using bacterial consortium. J. Environ. Sci. Health Part A 1, 1–13 (2020).
Kim, S. J. et al. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19(6), 859–881 (2008).
pubmed: 18421421
doi: 10.1007/s10532-008-9189-z
Van Beilen, J. B. & Funhoff, E. G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 74(1), 13–21 (2007).
pubmed: 17216462
doi: 10.1007/s00253-006-0748-0
Arino, S., Marchal, R. & Vandecasteele, J. P. Production of new extracellular glycolipids by a strain of Cellulomonas cellulans (Oerskovia xanthineolytica) and their structural characterization. Can. J. Microbiol. 44(3), 238–243 (1998).
doi: 10.1139/w97-156
Abbasian, F., Lockington, R., Megharaj, M. & Naidu, R. The biodiversity changes in the microbial population of soils contaminated with crude oil. Curr. Microbiol. 72(6), 663–670 (2016).
pubmed: 26858133
doi: 10.1007/s00284-016-1001-4
Neethu, C. S. et al. Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Sci. Rep. 9(1), 1–13 (2019).
doi: 10.1038/s41598-018-37903-x
Xie, S., Sun, W., Luo, C. & Cupples, A. M. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22(1), 71–81 (2011).
pubmed: 20549308
doi: 10.1007/s10532-010-9377-5
Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol. 205(4), 1443–1447 (2015).
pubmed: 25524234
doi: 10.1111/nph.13201
Mohammadi-Sichani, M. M. et al. Bioremediation of soil contaminated crude oil by Agaricomycetes. J. Environ. Health Sci. Eng. 15, 8 (2017).
pubmed: 28331625
pmcid: 5357327
doi: 10.1186/s40201-016-0263-x
Treu, R. & Falandysz, J. Mycoremediation of hydrocarbons with basidiomycetes—a review. J. Environ. Sci. Health B 52(3), 148–155 (2017).
pubmed: 28121269
doi: 10.1080/03601234.2017.1261536
Lemmel, F., Maunoury-Danger, F., Leyval, C., & Cébron, A. Altered fungal communities in contaminated soils from French industrial brownfields. J. Hazard. Mater. 124296 (2020).
Aguilar, M. et al. Next-generation sequencing assessment of eukaryotic diversity in oil sands tailings ponds sediments and surface water. J. Eukaryot. Microbiol. 63(6), 732–743 (2016).
pubmed: 27062087
doi: 10.1111/jeu.12320
Czaplicki, L. M., et al. Investigating the mycobiome of the Holcomb Creosote Superfund Site. Chemosphere, 126208 (2020).
Hamamura, N., Olson, S. H., Ward, D. M. & Inskeep, W. P. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl. Environ. Microbiol. 71(10), 5943–5950 (2005).
pubmed: 16204508
pmcid: 1265959
doi: 10.1128/AEM.71.10.5943-5950.2005
Mbadinga, S. M. et al. Microbial communities involved in anaerobic degradation of alkanes. Int. Biodeterior. Biodegradation 65(1), 1–13 (2011).
doi: 10.1016/j.ibiod.2010.11.009
Kleinsteuber, S., Schleinitz, K. M. & Vogt, C. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl. Microbiol. Biotechnol. 94(4), 851–873 (2012).
pubmed: 22476263
doi: 10.1007/s00253-012-4025-0
Bauer, R. D. et al. Mixing-controlled biodegradation in a toluene plume—results from two-dimensional laboratory experiments. J. Contam. Hydrol. 96(1–4), 150–168 (2008).
pubmed: 18083271
doi: 10.1016/j.jconhyd.2007.10.008
Vogt, C. et al. Stable isotope probing approaches to study anaerobic hydrocarbon degradation and degraders. J. Mol. Microbiol. Biotechnol. 26(1–3), 195–210 (2016).
pubmed: 26959525
da Cruz, G. F. et al. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microorganisms in deep sea reservoirs?. AMB Express 1(1), 47 (2011).
pubmed: 22196374
pmcid: 3279308
doi: 10.1186/2191-0855-1-47
Atashgahi, S. et al. A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8(1), 1–12 (2018).
doi: 10.1038/s41598-018-22617-x
Zhang, S., Hu, Z. & Wang, H. Metagenomic analysis exhibited the co-metabolism of polycyclic aromatic hydrocarbons by bacterial community from estuarine sediment. Environ. Int. 129, 308–319 (2019).
pubmed: 31150973
doi: 10.1016/j.envint.2019.05.028
Mukherjee, A. et al. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. 7(1), 1–22 (2017).
doi: 10.1038/s41598-017-01126-3
Das, D. et al. Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 105(3), 182–190 (2015).
pubmed: 25546474
doi: 10.1016/j.ygeno.2014.12.006