Effects of heroin self-administration and forced withdrawal on the expression of genes related to the mTOR network in the basolateral complex of the amygdala of male Lewis rats.


Journal

Psychopharmacology
ISSN: 1432-2072
Titre abrégé: Psychopharmacology (Berl)
Pays: Germany
ID NLM: 7608025

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 20 10 2021
accepted: 11 04 2022
pubmed: 26 4 2022
medline: 22 7 2022
entrez: 25 4 2022
Statut: ppublish

Résumé

The development of substance use disorders involves long-lasting adaptations in specific brain areas that result in an elevated risk of relapse. Some of these adaptations are regulated by the mTOR network, a signalling system that integrates extracellular and intracellular stimuli and modulates several processes related to plasticity. While the role of the mTOR network in cocaine- and alcohol-related disorders is well established, little is known about its participation in opiate use disorders. To use a heroin self-administration and a withdrawal protocol that induce incubation of heroin-seeking in male rats and study the associated effects on the expression of several genes related to the mTOR system and, in the specific case of Rictor, its respective translated protein and phosphorylation. We found that heroin self-administration elicited an increase in the expression of the genes Igf1r, Igf2r, Akt2 and Gsk3a in the basolateral complex of the amygdala, which was not as evident at 30 days of withdrawal. We also found an increase in the expression of Rictor (a protein of the mTOR complex 2) after heroin self-administration compared to the saline group, which was occluded at the 30-day withdrawal period. The activation levels of Rictor, measured by the phosphorylation rate, were also reduced after heroin self-administration, an effect that seemed more apparent in the protracted withdrawal group. These results suggest that heroin self-administration under extended access conditions modifies the expression profile of activators and components of the mTOR complexes and show a putative irresponsive mTOR complex 2 after withdrawal from heroin use.

Identifiants

pubmed: 35467104
doi: 10.1007/s00213-022-06144-2
pii: 10.1007/s00213-022-06144-2
pmc: PMC9293846
doi:

Substances chimiques

Heroin 70D95007SX
mTOR protein, rat EC 2.7.1.1
TOR Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2559-2571

Subventions

Organisme : Agencia Estatal de Investigación
ID : PID2019-104523RB-I00
Organisme : Agencia Estatal de Investigación
ID : PID2019-111594RB-100
Organisme : Secretaría de Estado de Investigación, Desarrollo e Innovación
ID : PSI2016-80541-P
Organisme : Instituto de Salud Carlos III
ID : RTA-RD16/020/0022
Organisme : Ministerio de Sanidad, Servicios Sociales e Igualdad
ID : 2016I073
Organisme : Ministerio de Sanidad, Servicios Sociales e Igualdad
ID : 2017I042
Organisme : Directorate-General for Justice
ID : JUST- 2017- AG- DRUG-806996-JUSTSO
Organisme : Universidad Nacional de Educación a Distancia
ID : Plan de Promoción de la Investigación

Informations de copyright

© 2022. The Author(s).

Références

Ahmed SH, Walker JR, Koob GF (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 22:413–421. S0893-133X(99)00133-5 [pii] https://doi.org/10.1016/S0893-133X(99)00133-5
Alessi DR, Andjelkovic1 M, Caudwell B, et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1
Arsham AM, Howell JJ, Simon MC (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. https://doi.org/10.1074/jbc.M212770200
doi: 10.1074/jbc.M212770200 pubmed: 12777372
Barak S, Liu F, Ben HS et al (2013) Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat Neurosci. https://doi.org/10.1038/nn.3439
doi: 10.1038/nn.3439 pubmed: 23792945 pmcid: 3725202
Beaulieu J-M, Sotnikova TD, Yao W-D et al (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0307921101
doi: 10.1073/pnas.0307921101 pubmed: 15505207 pmcid: 524822
Beaulieu J-M, Tirotta E, Sotnikova TD et al (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci. https://doi.org/10.1523/JNEUROSCI.5074-06.2007
doi: 10.1523/JNEUROSCI.5074-06.2007 pubmed: 17251429 pmcid: 6672900
Bedi G, Preston KL, Epstein DH et al (2011) Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol Psychiatry 69:708–711. https://doi.org/10.1016/j.biopsych.2010.07.014
doi: 10.1016/j.biopsych.2010.07.014 pubmed: 20817135 pmcid: 3027849
Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther.
Bhattacharya K, Maiti S, Mandal C (2016) PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma via Rictor hyperphosphorylation at Thr1135 and direct the mode of action of an mTORC1/2 inhibitor. Oncogenesis 5:e227–e227. https://doi.org/10.1038/oncsis.2016.34
doi: 10.1038/oncsis.2016.34 pubmed: 27239959 pmcid: 4945751
Bienkowski P, Rogowski A, Korkosz A et al (2004) Time-dependent changes in alcohol-seeking behaviour during abstinence. Eur Neuropsychopharmacol 14:355–360. https://doi.org/10.1016/J.EURONEURO.2003.10.005
doi: 10.1016/J.EURONEURO.2003.10.005 pubmed: 15336295
Blommaart EFC, Luiken JJFP, Blommaart PJE et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326. https://doi.org/10.1074/jbc.270.5.2320
doi: 10.1074/jbc.270.5.2320 pubmed: 7836465
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
doi: 10.1016/0003-2697(76)90527-3
Cerdá M, Krawczyk N, Hamilton L et al (2021) A critical review of the social and behavioral contributions to the overdose epidemic. Annu Rev Public Health 42:95–114. https://doi.org/10.1146/annurev-publhealth-090419-102727
doi: 10.1146/annurev-publhealth-090419-102727 pubmed: 33256535
Choi JH, Bertram PG, Drenan R et al (2002) The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep 3:988–994. https://doi.org/10.1093/embo-reports/kvf197
doi: 10.1093/embo-reports/kvf197 pubmed: 12231510 pmcid: 1307618
Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. https://doi.org/10.1016/0003-2697(87)90021-2
doi: 10.1016/0003-2697(87)90021-2 pubmed: 2440339
Ciccarone D (2021) The rise of illicit fentanyls, stimulants and the fourth wave of the opioid overdose crisis. Curr Opin Psychiatry 34:344–350. https://doi.org/10.1097/YCO.0000000000000717
doi: 10.1097/YCO.0000000000000717 pubmed: 33965972 pmcid: 8154745
Costa-Mattioli M, Sossin WS, Klann E et al (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26. https://doi.org/10.1016/j.neuron.2008.10.055
doi: 10.1016/j.neuron.2008.10.055 pubmed: 19146809 pmcid: 5154738
Cross DAE, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. https://doi.org/10.1038/378785a0
doi: 10.1038/378785a0 pubmed: 8524413
Cui Y, Zhang XQ, Cui Y et al (2010) Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats. Neuroscience 171:134–143. https://doi.org/10.1016/j.neuroscience.2010.08.064
doi: 10.1016/j.neuroscience.2010.08.064 pubmed: 20826199
Cunningham JT, Rodgers JT, Arlow DH et al (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740. https://doi.org/10.1038/nature06322
doi: 10.1038/nature06322 pubmed: 18046414
Dayas CV, Smith DW, Dunkley PR (2012) An emerging role for the mammalian target of rapamycin in “pathological” protein translation: relevance to cocaine addiction. Front Pharmacol 3. https://doi.org/10.3389/fphar.2012.00013
Dong Y, Taylor JR, Wolf ME, Shaham Y (2017) Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci 37:10867–10876. https://doi.org/10.1523/JNEUROSCI.1821-17.2017
doi: 10.1523/JNEUROSCI.1821-17.2017 pubmed: 29118216 pmcid: 5678019
Dudek H (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (80-) 275:661–665. https://doi.org/10.1126/science.275.5300.661
doi: 10.1126/science.275.5300.661
Düvel K, Yecies JL, Menon S et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:171–183. https://doi.org/10.1016/j.molcel.2010.06.022
doi: 10.1016/j.molcel.2010.06.022 pubmed: 20670887 pmcid: 2946786
Frias MA, Thoreen CC, Jaffe JD et al (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:1865–1870. https://doi.org/10.1016/j.cub.2006.08.001
doi: 10.1016/j.cub.2006.08.001 pubmed: 16919458
Fuchs RA, See RE (2002) Basolateral amygdala inactivation abolishes conditioned stimulus- and heroin-induced reinstatement of extinguished heroin-seeking behavior in rats. Psychopharmacology 160:425–433. https://doi.org/10.1007/s00213-001-0997-7
doi: 10.1007/s00213-001-0997-7 pubmed: 11919670
García-Martínez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385. https://doi.org/10.1042/BJ20081668
doi: 10.1042/BJ20081668 pubmed: 18925875
Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Incubation of cocaine craving after withdrawal. Nature 412:141–142. https://doi.org/10.1038/35084134
doi: 10.1038/35084134 pubmed: 11449260 pmcid: 2889613
Grimm JW, Shaham Y, Hope BT (2002) Effect of cocaine and sucrose withdrawal period on extinction behavior, cue-induced reinstatement, and protein levels of the dopamine transporter and tyrosine hydroxylase in limbic and cortical areas in rats. Behav Pharmacol 13:379–388
doi: 10.1097/00008877-200209000-00011
Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189. https://doi.org/10.1016/S0092-8674(02)00833-4
doi: 10.1016/S0092-8674(02)00833-4 pubmed: 12150926
Hashiguchi Y, Molina PE, Fan J et al (1996) Central opiate modulation of growth hormone and insulin-like growth factor-I. Brain Res Bull 40:99–104. https://doi.org/10.1016/0361-9230(96)00045-7
doi: 10.1016/0361-9230(96)00045-7 pubmed: 8724426
Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. https://doi.org/10.1038/ncb839
doi: 10.1038/ncb839 pubmed: 12172553
Inoki K, Ouyang H, Zhu T et al (2006) TSC2 Integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. https://doi.org/10.1016/j.cell.2006.06.055
doi: 10.1016/j.cell.2006.06.055 pubmed: 16959574
Jacinto E, Facchinetti V, Liu D et al (2006) SIN1/MIP1 Maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137. https://doi.org/10.1016/j.cell.2006.08.033
doi: 10.1016/j.cell.2006.08.033 pubmed: 16962653
Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128. https://doi.org/10.1038/ncb1183
doi: 10.1038/ncb1183 pubmed: 15467718
Julien L-A, Carriere A, Moreau J, Roux PP (2010) mTORC1-Activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30:908–921. https://doi.org/10.1128/MCB.00601-09
doi: 10.1128/MCB.00601-09 pubmed: 19995915
Kaizuka T, Hara T, Oshiro N et al (2010) Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285:20109–20116. https://doi.org/10.1074/jbc.M110.121699
doi: 10.1074/jbc.M110.121699 pubmed: 20427287 pmcid: 2888423
Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180
doi: 10.1038/sj.npp.1301564
Kasanetz F, Deroche-Gamonet V, Berson N et al (2010) Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328:1709–1712. https://doi.org/10.1126/science.1187801
doi: 10.1126/science.1187801 pubmed: 20576893
Kim D-H, Sarbassov DD, Ali SM et al (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904
doi: 10.1016/S1097-2765(03)00114-X
Kolodny A, Courtwright DT, Hwang CS et al (2015) The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu Rev Public Health 36:559–574. https://doi.org/10.1146/annurev-publhealth-031914-122957
doi: 10.1146/annurev-publhealth-031914-122957 pubmed: 25581144
Krasnova IN, Marchant NJ, Ladenheim B et al (2014) Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology 39:2008–2016. https://doi.org/10.1038/npp.2014.50
doi: 10.1038/npp.2014.50 pubmed: 24584329 pmcid: 4059911
Ladner CL, Yang J, Turner RJ, Edwards RA (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326:13–20. https://doi.org/10.1016/j.ab.2003.10.047
doi: 10.1016/j.ab.2003.10.047 pubmed: 14769330
Li P, Wu P, Xin X et al (2015) Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addict Biol 20:513–522. https://doi.org/10.1111/adb.12140
doi: 10.1111/adb.12140 pubmed: 24698092
Li Y, Eitan S, Wu J et al (2003) Morphine induces desensitization of insulin receptor signaling. Mol Cell Biol 23:6255–6266. https://doi.org/10.1128/MCB.23.17.6255-6266.2003
doi: 10.1128/MCB.23.17.6255-6266.2003 pubmed: 12917346 pmcid: 180943
Lin J, Liu L, Wen Q et al (2014) Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats. Int J Neuropsychopharmacol 17:127–136. https://doi.org/10.1017/S1461145713001156
doi: 10.1017/S1461145713001156 pubmed: 24103337
Liu-Yesucevitz L, Bassell GJ, Gitler AD et al (2011) Local RNA translation at the synapse and in disease. J Neurosci 31:16086–16093. https://doi.org/10.1523/JNEUROSCI.4105-11.2011
doi: 10.1523/JNEUROSCI.4105-11.2011 pubmed: 22072660 pmcid: 3241995
Long X, Lin Y, Ortiz-Vega S et al (2005) Rheb binds and regulates the mTOR kinase. Curr Biol. https://doi.org/10.1016/j.cub.2005.02.053
doi: 10.1016/j.cub.2005.02.053 pubmed: 16271866
Luo Y-X, Xue Y-X, Shen H-W, Lu L (2013) Role of amygdala in drug memory. Neurobiol Learn Mem 105:159–173. https://doi.org/10.1016/j.nlm.2013.06.017
doi: 10.1016/j.nlm.2013.06.017 pubmed: 23831499
Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. https://doi.org/10.1038/nrm2672
doi: 10.1038/nrm2672 pubmed: 19339977
Madhunapantula SV, Mosca PJ, Robertson GP (2011) The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Cancer Biol Ther 12:1032–1049. https://doi.org/10.4161/cbt.12.12.18442
doi: 10.4161/cbt.12.12.18442 pubmed: 22157148 pmcid: 3335938
Markou A, Li J, Tse K, Li X (2018) Cue-induced nicotine-seeking behavior after withdrawal with or without extinction in rats. Addict Biol 23:111–119. https://doi.org/10.1111/adb.12480
doi: 10.1111/adb.12480 pubmed: 27894160
Mazei-Robison MS, Koo JW, Friedman AK, et al (2011) Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72:977–990. S0896-6273(11)00922-6 [pii]. https://doi.org/10.1016/j.neuron.2011.10.012
Meffre J, Chaumont-Dubel S, Mannoury la Cour C et al (2012) 5-HT 6 receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol Med 4:1043–1056. https://doi.org/10.1002/emmm.201201410
doi: 10.1002/emmm.201201410 pubmed: 23027611 pmcid: 3491835
Muller DL, Unterwald EM (2004) In vivo regulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine. J Pharmacol Exp Ther 310:774–782. https://doi.org/10.1124/jpet.104.066548
doi: 10.1124/jpet.104.066548 pubmed: 15056728
Nava F, Caldiroli E, Premi S, Lucchini A (2006) Relationship between plasma cortisol levels, withdrawal symptoms and craving in abstinent and treated heroin addicts. J Addict Dis 25:9–16. https://doi.org/10.1300/J069v25n02_02
doi: 10.1300/J069v25n02_02 pubmed: 16785214
Neasta J, Barak S, Hamida S Ben, Ron D (2014) MTOR complex 1: a key player in neuroadaptations induced by drugs of abuse
Neasta J, Ben Hamida S, Yowell Q et al (2010) Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1005554107
doi: 10.1073/pnas.1005554107 pubmed: 21041654 pmcid: 2993345
Parvaz MA, Moeller SJ, Goldstein RZ (2016) Incubation of cue-induced craving in adults addicted to cocaine measured by electroencephalography. JAMA Psychiat. https://doi.org/10.1001/jamapsychiatry.2016.2181
doi: 10.1001/jamapsychiatry.2016.2181
Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates : Hard Cover Edition. Elsevier Science
Pearce LR, Huang X, Boudeau J et al (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405:513–522. https://doi.org/10.1042/BJ20070540
doi: 10.1042/BJ20070540 pubmed: 17461779 pmcid: 2267312
Perkinton MS, Ip J, Wood GL et al (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem 80:239–254. https://doi.org/10.1046/j.0022-3042.2001.00699.x
doi: 10.1046/j.0022-3042.2001.00699.x pubmed: 11902114
Perkinton MS, Sihra TS, Williams RJ (1999) Ca 2+ -Permeable AMPA receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons. J Neurosci 19:5861–5874. https://doi.org/10.1523/JNEUROSCI.19-14-05861.1999
doi: 10.1523/JNEUROSCI.19-14-05861.1999 pubmed: 10407026 pmcid: 6783096
Perrine SA, Miller JS, Unterwald EM (2008) Cocaine regulates protein kinase B and glycogen synthase kinase-3 activity in selective regions of rat brain. J Neurochem. https://doi.org/10.1111/j.1471-4159.2008.05632.x
doi: 10.1111/j.1471-4159.2008.05632.x pubmed: 18717814
Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886. https://doi.org/10.1016/j.cell.2009.03.046
doi: 10.1016/j.cell.2009.03.046 pubmed: 19446321 pmcid: 2758791
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
doi: 10.1093/nar/29.9.e45
Polakiewicz RD, Schieferl SM, Gingras AC et al (1998) mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. J Biol Chem 273:23534–23541. https://doi.org/10.1074/JBC.273.36.23534
doi: 10.1074/JBC.273.36.23534 pubmed: 9722592
Porstmann T, Santos CR, Griffiths B et al (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–236. https://doi.org/10.1016/j.cmet.2008.07.007
doi: 10.1016/j.cmet.2008.07.007 pubmed: 18762023 pmcid: 2593919
Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480. https://doi.org/10.1038/nature03205
doi: 10.1038/nature03205 pubmed: 15690031
Roura-Martínez D, Díaz-Bejarano P, Ucha M et al (2020) Comparative analysis of the modulation of perineuronal nets in the prefrontal cortex of rats during protracted withdrawal from cocaine, heroin and sucrose self-administration. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2020.108290
doi: 10.1016/j.neuropharm.2020.108290 pubmed: 32888961
Roura-Martínez D, Ucha M, Orihuel J et al (2020) Central nucleus of the amygdala as a common substrate of the incubation of drug and natural reinforcer seeking. Addict Biol. https://doi.org/10.1111/adb.12706
doi: 10.1111/adb.12706 pubmed: 30623520
Ruijter JM, Ramakers C, Hoogaars WMH et al (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45–e45. https://doi.org/10.1093/nar/gkp045
doi: 10.1093/nar/gkp045 pubmed: 19237396 pmcid: 2665230
Russo SJ, Bolanos CA, Theobald DE, et al (2007) IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 10:93–99. nn1812 [pii] https://doi.org/10.1038/nn1812
Sancak Y, Peterson TR, Shaul YD, et al (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science (80- ). https://doi.org/10.1126/science.1157535
Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915. https://doi.org/10.1016/j.molcel.2007.03.003
doi: 10.1016/j.molcel.2007.03.003 pubmed: 17386266
Sánchez-Puelles C, Calleja-Felipe M, Ouro A et al (2019) PTEN activity defines an axis for plasticity at cortico-amygdala synapses and influences social behavior. Cereb Cortex. https://doi.org/10.1093/cercor/bhz103
doi: 10.1093/cercor/bhz103
Santini E, Heiman M, Greengard P et al (2009) Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal 2:ra36. https://doi.org/10.1126/scisignal.2000308
doi: 10.1126/scisignal.2000308 pubmed: 19622833
Sarbassov DD, Ali SM, Kim D-H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302. https://doi.org/10.1016/j.cub.2004.06.054
doi: 10.1016/j.cub.2004.06.054 pubmed: 15268862
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101. https://doi.org/10.1126/science.1106148
doi: 10.1126/science.1106148 pubmed: 15718470
Schieke SM, Phillips D, McCoy JP et al (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281:27643–27652. https://doi.org/10.1074/jbc.M603536200
doi: 10.1074/jbc.M603536200 pubmed: 16847060
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019 pubmed: 22743772
Shalev U, Morales M, Hope B et al (2001) Time-dependent changes in extinction behavior and stress-induced reinstatement of drug seeking following withdrawal from heroin in rats. Psychopharmacology 156:98–107. https://doi.org/10.1007/s002130100748
doi: 10.1007/s002130100748 pubmed: 11465640
Shaw RJ, Bardeesy N, Manning BD et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. https://doi.org/10.1016/j.ccr.2004.06.007
doi: 10.1016/j.ccr.2004.06.007 pubmed: 15261145
Shepard JD, Bossert JM, Liu SY, Shaham Y (2004) The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol Psychiatry 55:1082–1089. https://doi.org/10.1016/j.biopsych.2004.02.032
doi: 10.1016/j.biopsych.2004.02.032 pubmed: 15158427
Shi J, Jun W, Zhao L-Y et al (2009) Effect of rapamycin on cue-induced drug craving in abstinent heroin addicts. Eur J Pharmacol 615:108–112. https://doi.org/10.1016/j.ejphar.2009.05.011
doi: 10.1016/j.ejphar.2009.05.011 pubmed: 19470385
Shi X, Miller JS, Harper LJ et al (2014) Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology 231:3109–3118. https://doi.org/10.1007/s00213-014-3491-8
doi: 10.1007/s00213-014-3491-8 pubmed: 24595501 pmcid: 4110417
Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15:155–162. https://doi.org/10.1038/nrm3757
doi: 10.1038/nrm3757 pubmed: 24556838
Stoica L, Zhu PJ, Huang W et al (2011) Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc Natl Acad Sci U S A 108:3791–3796. https://doi.org/10.1073/pnas.1014715108
doi: 10.1073/pnas.1014715108 pubmed: 21307309 pmcid: 3048125
Takei N (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24:9760–9769. https://doi.org/10.1523/JNEUROSCI.1427-04.2004
doi: 10.1523/JNEUROSCI.1427-04.2004 pubmed: 15525761 pmcid: 6730227
Thedieck K, Polak P, Kim ML et al (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2:e1217. https://doi.org/10.1371/journal.pone.0001217
doi: 10.1371/journal.pone.0001217 pubmed: 18030348 pmcid: 2075366
Ucha M, Coria SM, Núñez AE et al (2019) Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats. J Psychopharmacol. https://doi.org/10.1177/0269881119836206
doi: 10.1177/0269881119836206 pubmed: 30887859
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A (2020) The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 34:1176–1199
doi: 10.1177/0269881120944159
Vander HE, Lee S, Bandhakavi S et al (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323. https://doi.org/10.1038/ncb1547
doi: 10.1038/ncb1547
Venniro M, Reverte I, Ramsey LA, et al (2021) Factors modulating the incubation of drug and non-drug craving and their clinical implications. Neurosci Biobehav Rev
Volkow ND, Frieden TR, Hyde PS, Cha SS (2014) Medication-assisted therapies — tackling the opioid-overdose epidemic. N Engl J Med 370:2063–2066. https://doi.org/10.1056/NEJMp1402780
doi: 10.1056/NEJMp1402780 pubmed: 24758595
Wang G, Shi J, Chen N et al (2013) Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLoS ONE 8:e68791. https://doi.org/10.1371/journal.pone.0068791
doi: 10.1371/journal.pone.0068791 pubmed: 23894345 pmcid: 3722210
Wang Y, Zhang H, Cui J et al (2018) Opiate-associated contextual memory formation and retrieval are differentially modulated by dopamine D1 and D2 signaling in hippocampal–prefrontal connectivity. Neuropsychopharmacology. https://doi.org/10.1038/s41386-018-0068-y
doi: 10.1038/s41386-018-0068-y pubmed: 30504928 pmcid: 6785138
Wendel H-G, de Stanchina E, Fridman JS et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337. https://doi.org/10.1038/nature02369
doi: 10.1038/nature02369 pubmed: 15029198
Wu P, Xue Y, Ding Z et al (2011) Glycogen synthase kinase 3? in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. J Neurochem 118:113–125. https://doi.org/10.1111/j.1471-4159.2011.07277.x
doi: 10.1111/j.1471-4159.2011.07277.x pubmed: 21592120
Zhang Q, Tang X, Zhang ZF et al (2007) Nicotine induces hypoxia-inducible factor-1α expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-06-2898
doi: 10.1158/1078-0432.CCR-06-2898 pubmed: 18094414 pmcid: 4166418

Auteurs

Marcos Ucha (M)

Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), C/ Juan del Rosal 10, 28040, Madrid, Spain.

David Roura-Martínez (D)

Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), C/ Juan del Rosal 10, 28040, Madrid, Spain.
Centre National de La Recherche ScientifiqueInstitut de Neurosciences de La Timone, UMR 7289, Aix Marseille Université, Marseille, France.

Raquel Santos-Toscano (R)

School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK.

Roberto Capellán (R)

Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), C/ Juan del Rosal 10, 28040, Madrid, Spain.

Emilio Ambrosio (E)

Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), C/ Juan del Rosal 10, 28040, Madrid, Spain. eambrosio@psi.uned.es.

Alejandro Higuera-Matas (A)

Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), C/ Juan del Rosal 10, 28040, Madrid, Spain. ahiguera@psi.uned.es.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH