Exometabolomic analysis of susceptible and multi-drug resistant Pseudomonas aeruginosa.
P. aeruginosa
antibiotic resistance
metabolomics
trehalose
Journal
Letters in applied microbiology
ISSN: 1472-765X
Titre abrégé: Lett Appl Microbiol
Pays: England
ID NLM: 8510094
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
revised:
10
03
2022
received:
10
10
2021
accepted:
01
04
2022
pubmed:
15
4
2022
medline:
20
8
2022
entrez:
14
4
2022
Statut:
ppublish
Résumé
Multidrug resistant (MDR) Pseudomonas aeruginosa strains have recently become one of the major public health concerns worldwide leading to difficulties in selecting appropriate antibiotic treatment. Thus, it is important to elucidate the characteristics of MDR isolates. Herein, we aimed to determine the unique exometabolome profile of P. aeruginosa clinical isolates in monocultures that comprise high resistance to multiple antibiotics, and compare the differential metabolite profiles obtained from susceptible isolates by using GC/MS. Our results showed that partial least square-discriminant analysis (PLS-DA) score plot clearly discriminated the MDR and susceptible isolates indicating the altered exometabolite profiles, and highlighted the significantly enriched levels of trehalose and glutamic acid in MDR isolates. Expression of trehalose synthase (treS) was also 1·5-fold higher in MDR isolates, relatively to susceptible isolates. Overall, our study provides insights into the distinct footprints of MDR P. aeruginosa isolates in mono-culture.
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
234-242Informations de copyright
© 2022 The Society for Applied Microbiology.
Références
Baev, M.V., Baev, D., Radek, A.J. and Campbell, J.W. (2006) Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays. Appl Microbiol Biotechnol 71, 310-316.
Chatzimitakos, T.G. and Stalikas, C.D. (2019) Metabolic fingerprinting of bacteria exposed to nanomaterials, using online databases, NMR, and high-resolution mass spectrometry. Methods Mol Biol 1894, 271-280.
Chen, X.H., Zhang, B.W., Li, H. and Peng, X.X. (2015) Myo-inositol improves the host's ability to eliminate balofloxacin-resistant Escherichia coli. Sci Rep 5, 10720.
Chong, J., Wishart, D.S. and Xia, J. (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinform 68, e86.
Collins, J., Robinson, C., Danhof, H., Knetsch, C.W., van Leeuwen, H.C., Lawley, T.D., Auchtung, J.M. and Britton, R.A. (2018) Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291.
Deptula, A. and Gospodarek, E. (2010) Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch Microbiol 192, 79-84.
Djonovic, S., Urbach, J.M., Drenkard, E., Bush, J., Feinbaum, R., Ausubel, J.L., Traficante, D., Risech, M. et al. (2013) Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 9, e1003217.
Dunn, W.B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J.D. et al. (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6, 1060-1083.
Elbein, A.D., Pan, Y.T., Pastuszak, I. and Carroll, D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R-27R.
EUCAST. (2016) Recommendations for MIC determination of colistin (polymyxin E ) As recommended by the joint CLSI-EUCAST. Polymyxin Breakpoints Working Group.
Feehily, C. and Karatzas, K.A.G. (2013) Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol 114, 11-24.
Freeman, B.C., Chen, C. and Beattie, G.A. (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12, 1486-1497.
Gomez-Zorrilla, S., Juan, C., Cabot, G., Camoez, M., Tubau, F., Oliver, A., Dominguez, M.A., Ariza, J. et al. (2016) Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies. Int J Antimicrob Agents 47, 368-374.
Gonulalan, E.M., Nemutlu, E., Bayazeid, O., Kocak, E., Yalcin, F.N. and Demirezer, L.O. (2020) Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine 74, 152920.
Han, M.L., Zhu, Y., Creek, D.J., Lin, Y.W., Anderson, D., Shen, H.H., Tsuji, B., Gutu, A.D. et al. (2018) Alterations of metabolic and lipid profiles in polymyxin-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 62, e02656-17.
Hassan, K.S. and Al-Riyami, D. (2012) Infective endocarditis of the aortic valve caused by Pseudomonas aeruginosa and treated medically in a patient on haemodialysis. Sultan Qaboos Univ Med J 12, 120-123.
Horcajada, J.P., Montero, M., Oliver, A., Sorli, L., Luque, S., Gomez-Zorrilla, S., Benito, N. and Grau, S. (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32, e00031-19.
Hwang, W. and Yoon, S.S. (2019) Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa. Sci Rep 9, 487.
Khaledi, A., Schniederjans, M., Pohl, S., Rainer, R., Bodenhofer, U., Xia, B., Klawonn, F., Bruchmann, S. et al. (2016) Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60, 4722-4733.
Klockgether, J., Miethke, N., Kubesch, P., Bohn, Y.S., Brockhausen, I., Cramer, N., Eberl, L., Greipel, J. et al. (2013) Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environ Microbiol 15, 191-210.
Kocak, E., Ozkul, C., Taskor Onel, G., Nemutlu, E., Kir, S. and Sagiroglu, M. (2020) Screening the antimicrobial effect of ferrocene-boronic acid on Pseudomonas aeruginosa using proteomics and metabolomics approach. J Res Pharm 24, 812-820.
Kocak, E. and Ozkul, C. (2020) Metabolic response of Escherichia coli to subinhibitory concentration of ofloxacin. J Res Pharm 24, 593-601.
Lee, J.J., Lee, S.K., Song, N., Nathan, T.O., Swarts, B.M., Eum, S.Y., Ehrt, S., Cho, S.N. et al. (2019) Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat Commun 10, 2928.
Lin, J.S., Smith, M.P., Chapin, K.C., Baik, H.S., Bennett, G.N. and Foster, J.W. (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microb 62, 3094-3100.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408.
Lu, C.W., Hao, J.L., Liu, X.F., Liang, L.L. and Zhou, D.D. (2017) Pseudomonas aeruginosa endophthalmitis caused by accidental iatrogenic ocular injury with a hypodermic needle. J Int Med Res 45, 882-885.
Madaha, E.L., Mienie, C., Gonsu, H.K., Bughe, R.N., Fonkoua, M.C., Mbacham, W.F., Alayande, K.A., Bezuidenhout, C.C. et al. (2020) Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaounde, Cameroon. PLoS One 15, e0238390.
Marinos, G., Kaleta, C. and Waschina, S. (2020) Defining the nutritional input for genome-scale metabolic models: a roadmap. PLoS One 15, e0236890.
Methe, B.A. and Lasa, I. (2013) Microbiology in the 'omics era: from the study of single cells to communities and beyond Editorial overview. Curr Opin Microbiol 16, 602-604.
Munita, J.M. and Arias, C.A. (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4, 1-24.
Pena, C., Cabot, G., Gomez-Zorrilla, S., Zamorano, L., Ocampo-Sosa, A., Murillas, J., Almirante, B., Pomar, V. et al. (2015) Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 60, 539-548.
Pinu, F.R. and Villas-Boas, S.G. (2017) Extracellular microbial metabolomics: the state of the art. Metabolites 7, 43.
Ruhal, R., Kataria, R. and Choudhury, B. (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6, 493-502.
Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U. and Vahaboglu, H. (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52, 403-408.
Silva, L.P. and Northen, T.R. (2015) Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment. Curr Opin Biotech 34, 209-216.
Tang, J. (2011) Microbial metabolomics. Curr Genomics 12, 391-403.
Vanaporn, M. and Titball, R.W. (2020) Trehalose and bacterial virulence. Virulence 11, 1192-1202.
Waterman, S.R. and Small, P.L.C. (2003) The glutamate-dependent acid resistance system of Escherichia coli and Shigella flexneri is inhibited in vitro by L-trans-pyrrolidine-2,4-dicarboxylic acid. Fems Microbiol Lett 224, 119-125.
Wienhausen, G., Noriega-Ortega, B.E., Niggemann, J., Dittmar, T. and Simon, M. (2017) The exometabolome of two model strains of the Roseobacter group: a marketplace of microbial metabolites. Front Microbiol 8, 1985.
Wiwanitkit, V. (2013) Utilization of multiple "omics" studies in microbial pathogeny for microbiology insights. Asian Pac J Trop Biomed 3, 330-333.
Wolf, A., Kramer, R. and Morbach, S. (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49, 1119-1134.
Wu, M.C., Lin, T.L., Hsieh, P.F., Yang, H.C. and Wang, J.T. (2011) Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 6, e23500.
Zhao, X.L., Chen, H., Zhong, K.K., Li, L. and Kong, X.H. (2018) Myo-inositol as an adjuvant to florfenicol against Aeromonas hydrophila infection in common carp Cyprinus carpio. FEMS Microbiol Lett 365, fny212.