DeepFall: Non-Invasive Fall Detection with Deep Spatio-Temporal Convolutional Autoencoders.

Anomaly detection Convolutional autoencoders Fall detection Spatio-temporal

Journal

Journal of healthcare informatics research
ISSN: 2509-4971
Titre abrégé: J Healthc Inform Res
Pays: Switzerland
ID NLM: 101707451

Informations de publication

Date de publication:
Mar 2020
Historique:
received: 04 10 2018
revised: 12 07 2019
accepted: 25 10 2019
entrez: 13 4 2022
pubmed: 18 12 2019
medline: 18 12 2019
Statut: epublish

Résumé

Human falls rarely occur; however, detecting falls is very important from the health and safety perspective. Due to the rarity of falls, it is difficult to employ supervised classification techniques to detect them. Moreover, in these highly skewed situations, it is also difficult to extract domain-specific features to identify falls. In this paper, we present a novel framework,

Identifiants

pubmed: 35415435
doi: 10.1007/s41666-019-00061-4
pii: 61
pmc: PMC8982799
doi:

Types de publication

Journal Article

Langues

eng

Pagination

50-70

Informations de copyright

© Springer Nature Switzerland AG 2019.

Déclaration de conflit d'intérêts

Conflict of interestsThe authors declare that they have no conflict of interest.

Références

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:557-560
pubmed: 28268392
PLoS One. 2016 Apr 19;11(4):e0152173
pubmed: 27093601
Comput Methods Programs Biomed. 2014 Dec;117(3):489-501
pubmed: 25308505
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):221-31
pubmed: 22392705
IEEE Trans Image Process. 2017 Feb 17;26(4):1992-2004
pubmed: 28221995
IEEE J Biomed Health Inform. 2014 Nov;18(6):1915-22
pubmed: 25375688
Int J Med Inform. 2016 Oct;94:112-6
pubmed: 27573318
Ann Intern Med. 1990 Aug 15;113(4):308-16
pubmed: 2115755

Auteurs

Jacob Nogas (J)

University of Toronto, Toronto, Canada.

Shehroz S Khan (SS)

University of Toronto, Toronto, Canada.

Alex Mihailidis (A)

Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.

Classifications MeSH