First experiences with dynamic renal [
Compartmental kinetic modelling
DOTA PET
Dynamic PET
Glomerular filtration rate
Renal PET/CT
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
24
02
2022
accepted:
26
03
2022
pubmed:
13
4
2022
medline:
27
7
2022
entrez:
12
4
2022
Statut:
ppublish
Résumé
The determination of the glomerular filtration rate (GFR) is decisive for a variety of clinical issues, for example, to monitor the renal function in radionuclide therapy patients. Renal scintigraphy using glomerularly filtered tracers allows combined acquisition of renograms and GFR estimation but requires repeated blood sampling for several hours. In contrast, dynamic PET imaging using the glomerularly filtered tracer [ Dynamic [ PET image interpretation revealed the same findings as conventional scintigraphy (2/12 patients with both- and 1/12 patients with right-sided urinary obstruction). Model fit functions were substantially improved for the modified approach to exclude spill-over. Depending on the modelling approach, GFR Renal [
Identifiants
pubmed: 35412053
doi: 10.1007/s00259-022-05781-1
pii: 10.1007/s00259-022-05781-1
pmc: PMC9002049
doi:
Substances chimiques
Gallium Radioisotopes
0
Heterocyclic Compounds, 1-Ring
0
1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid
1HTE449DGZ
Creatinine
AYI8EX34EU
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3373-3386Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. JAMA. 2019;322:1294–304. https://doi.org/10.1001/jama.2019.14745 .
doi: 10.1001/jama.2019.14745
pubmed: 31573641
pmcid: 7015670
Matzke GR, Aronoff GR, Atkinson AJ Jr, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011;80:1122–37. https://doi.org/10.1038/ki.2011.322 .
doi: 10.1038/ki.2011.322
pubmed: 21918498
Lentine KL, Kasiske BL, Levey AS, Adams PL, Alberu J, Bakr MA, et al. KDIGO clinical practice guideline on the evaluation and care of living kidney donors. Transplantation. 2017;101:S1–109. https://doi.org/10.1097/TP.0000000000001769 .
doi: 10.1097/TP.0000000000001769
pubmed: 28742762
Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44. https://doi.org/10.1007/s00259-019-04485-3 .
doi: 10.1007/s00259-019-04485-3
pubmed: 31440799
Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Horsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16. https://doi.org/10.1007/s00259-012-2330-6 .
doi: 10.1007/s00259-012-2330-6
pubmed: 23389427
pmcid: 3622744
Levey AS, Inker LA, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Dis. 2014;63:820–34. https://doi.org/10.1053/j.ajkd.2013.12.006 .
doi: 10.1053/j.ajkd.2013.12.006
pubmed: 24485147
pmcid: 4001724
Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83. https://doi.org/10.1056/NEJMra054415 .
doi: 10.1056/NEJMra054415
pubmed: 16760447
Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/173 m2. Am J Kidney Dis. 2010;56:486–95. https://doi.org/10.1053/j.ajkd.2010.03.026 .
doi: 10.1053/j.ajkd.2010.03.026
pubmed: 20557989
pmcid: 2926290
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 .
doi: 10.7326/0003-4819-150-9-200905050-00006
pubmed: 19414839
pmcid: 2763564
Blaufox MD, De Palma D, Taylor A, Szabo Z, Prigent A, Samal M, et al. The SNMMI and EANM practice guideline for renal scintigraphy in adults. Eur J Nucl Med Mol Imaging. 2018;45:2218–28. https://doi.org/10.1007/s00259-018-4129-6 .
doi: 10.1007/s00259-018-4129-6
pubmed: 30167801
Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS, British Nuclear Medicine S. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun. 2004;25:759–69. https://doi.org/10.1097/01.mnm.0000136715.71820.4a .
doi: 10.1097/01.mnm.0000136715.71820.4a
pubmed: 15266169
Mulligan JS, Blue PW, Hasbargen JA. Methods for measuring GFR with technetium-99m-DTPA: an analysis of several common methods. J Nucl Med. 1990;31:1211–9.
pubmed: 2194005
Hofman MS, Hicks RJ. Gallium-68 EDTA PET/CT for renal imaging. Semin Nucl Med. 2016;46:448–61. https://doi.org/10.1053/j.semnuclmed.2016.04.002 .
doi: 10.1053/j.semnuclmed.2016.04.002
pubmed: 27553470
Lee HS, Kang YK, Lee H, Han JH, Moon BS, Byun SS, et al. Compartmental-modelling-based measurement of murine glomerular filtration rate using (18)F-fluoride PET/CT. Sci Rep. 2019;9:11269. https://doi.org/10.1038/s41598-019-47728-x .
doi: 10.1038/s41598-019-47728-x
pubmed: 31375734
pmcid: 6677809
Hofman M, Binns D, Johnston V, Siva S, Thompson M, Eu P, et al. 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA. J Nucl Med. 2015;56:405–9. https://doi.org/10.2967/jnumed.114.147843 .
doi: 10.2967/jnumed.114.147843
pubmed: 25678493
Lee JY, Jeong JM, Kim YJ, Jeong HJ, Lee YS, Lee DS, et al. Preparation of Ga-68-NOTA as a renal PET agent and feasibility tests in mice. Nucl Med Biol. 2014;41:210–5. https://doi.org/10.1016/j.nucmedbio.2013.11.005 .
doi: 10.1016/j.nucmedbio.2013.11.005
pubmed: 24388044
Allard M, Doucet D, Kien P, Bonnemain B, Caille JM. Experimental study of DOTA-gadolinium. Pharmacokinetics and pharmacologic properties Invest Radiol. 1988;23(Suppl 1):S271–4. https://doi.org/10.1097/00004424-198809001-00059 .
doi: 10.1097/00004424-198809001-00059
pubmed: 3198361
Le Mignon MM, Chambon C, Warrington S, Davies R, Bonnemain B. Gd-DOTA Pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol. 1990;25:933–7.
doi: 10.1097/00004424-199008000-00010
Pandey U, Mukherjee A, Sarma HD, Das T, Pillai MR, Venkatesh M. Evaluation of 90Y-DTPA and 90Y-DOTA for potential application in intra-vascular radionuclide therapy. Appl Radiat Isot. 2002;57:313–8. https://doi.org/10.1016/s0969-8043(02)00103-3 .
doi: 10.1016/s0969-8043(02)00103-3
pubmed: 12201136
Chachuat A, Molinier P, Bonnemain B, Chambon C, Gayet JL. Pharmacokinetics and tolerance of Gd-DOTA (DOTAREM) in healthy volunteers and in patients with chronic renal failure. Eur Radiol. 1992;2:326–9. https://doi.org/10.1007/BF00175436 .
doi: 10.1007/BF00175436
Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging. 2003;30:354–61. https://doi.org/10.1007/s00259-002-1068-y .
doi: 10.1007/s00259-002-1068-y
pubmed: 12634962
Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33:1491–9. https://doi.org/10.1007/s00259-006-0155-x .
doi: 10.1007/s00259-006-0155-x
pubmed: 16858570
de Nijs R, Lagerburg V, Klausen TL, Holm S. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections. Nucl Med Commun. 2014;35:522–33. https://doi.org/10.1097/MNM.0000000000000079 .
doi: 10.1097/MNM.0000000000000079
pubmed: 24525900
pmcid: 3969156
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8. https://doi.org/10.1037//0033-2909.86.2.420 .
doi: 10.1037//0033-2909.86.2.420
pubmed: 18839484
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63. https://doi.org/10.1016/j.jcm.2016.02.012 .
doi: 10.1016/j.jcm.2016.02.012
pubmed: 27330520
pmcid: 4913118
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.
doi: 10.1016/S0140-6736(86)90837-8
Tahari AK, Bravo PE, Rahmim A, Bengel FM, Szabo Z. Initial human experience with Rubidium-82 renal PET/CT imaging. J Med Imaging Radiat Oncol. 2014;58:25–31. https://doi.org/10.1111/1754-9485.12079 .
doi: 10.1111/1754-9485.12079
pubmed: 24529052
Alpert NM, Rabito CA, Correia DJ, Babich JW, Littman BH, Tompkins RG, et al. Mapping of local renal blood flow with PET and H(2)(15)O. J Nucl Med. 2002;43:470–5.
pubmed: 11937589
Blaufox MD. PET measurement of renal glomerular filtration rate: is there a role in nuclear medicine? J Nucl Med. 2016;57:1495–6. https://doi.org/10.2967/jnumed.116.174607 .
doi: 10.2967/jnumed.116.174607
pubmed: 27103026
Green CH. Technetium-99m production issues in the United Kingdom. J Med Phys. 2012;37:66–71. https://doi.org/10.4103/0971-6203.94740 .
doi: 10.4103/0971-6203.94740
pubmed: 22557795
pmcid: 3339145