Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area.
Air pollution
Emission reduction
Long-term data
Mountain lakes
Nitrate
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
11
01
2022
accepted:
31
03
2022
pubmed:
11
4
2022
medline:
14
9
2022
entrez:
10
4
2022
Statut:
ppublish
Résumé
The effects of the COVID-19 lockdown on deposition and surface water chemistry were investigated in an area south of the Alps. Long-term data provided by the monitoring networks revealed that the deposition of sulfur and nitrogen compounds in this area has stabilized since around 2010; in 2020, however, both concentrations and deposition were significantly below the average values of the previous decade for SO
Identifiants
pubmed: 35397723
doi: 10.1007/s11356-022-20080-w
pii: 10.1007/s11356-022-20080-w
pmc: PMC8994528
doi:
Substances chimiques
Air Pollutants
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
62312-62329Informations de copyright
© 2022. The Author(s).
Références
APHA Awwa WEF (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC
ApSimon HM, Barker BM, Kayin S (1994) Modelling studies of the atmospheric release and transport of ammonia in anticyclonic episodes. Atm Envir 28:665–678. https://doi.org/10.1016/1352-2310(94)90043-4
doi: 10.1016/1352-2310(94)90043-4
Barnes RT, Williams MW, Parman JN, Hill K, Caine N (2014) Thawing glacial and permafrost features contribute to nitrogen export from Green Lakes Valley, Colorado Front Range, USA. Biogeochemistry 117:113–130. https://doi.org/10.1007/s10533-013-9886-5
doi: 10.1007/s10533-013-9886-5
Baron JS, Driscoll CT, Stoddard JL, Richer EE (2011) Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience 61:602–613. https://doi.org/10.1525/bio.2011.61.8.6
doi: 10.1525/bio.2011.61.8.6
Bergström A-K, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Change Biol 12:635–643. https://doi.org/10.1111/j.1365-2486.2006.01129.x
doi: 10.1111/j.1365-2486.2006.01129.x
Bowman WD, Ayyad A, Bueno de Mesquita CP, Fierer N, Potter TS, Sternagel S (2018) Limited ecosystem recovery from simulated chronic nitrogen deposition. Ecol Appl 28:1762–1772. https://doi.org/10.1002/eap.1783
doi: 10.1002/eap.1783
Braga F, Scarpa GM, Brando VE, Manfè G, Zaggia L (2020) COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon. Sci Total Environ 736:139612. https://doi.org/10.1016/j.scitotenv.2020.139612
doi: 10.1016/j.scitotenv.2020.139612
Camarero L, Rogora M, Mosello R, Anderson J, Barbieri A, Botev I, Kernan M, Kopacek J, Korhola A, Lotter A, Muri G, Postolache C, Stuchlik E, Thies H, Wright RF (2009) Regionalisation of chemical variability in European mountain lakes. Freshwater Biol 54:2452–2469. https://doi.org/10.1111/j.1365-2427.2009.02296.x
doi: 10.1111/j.1365-2427.2009.02296.x
Carrera G, Fernandez P, Grimalt J, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2002) Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36:2581–2588. https://doi.org/10.1021/es0102585
doi: 10.1021/es0102585
Ciarelli G, Jiang J, El Haddad I, Bigi A, Aksoyoglu S, Prévôt ASH, Marinoni A, Shen J, Yan C, Bianchi F (2021) Modeling the effect of reduced traffic due to COVID-19 measures on air quality using a chemical transport model: impacts on the Po Valley and the Swiss Plateau regions. Environ Sci Atmos. 1:228–240. https://doi.org/10.1039/D1EA00036E
doi: 10.1039/D1EA00036E
De Marco A, Proietti C, Anav A, Ciancarella L, D’Elia I, Fares S, Fornasier MF, Fusaro L, Gualtieri M, Manes F, Marchetto A, Mircea M, Paoletti E, Piersanti A, Rogora M, Salvati L, Salvatori E, Screpanti A, Vialetto G, Vitale M, Leonardi C (2019) Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: insights from Italy. Environ Int 125:320–333. https://doi.org/10.1016/j.envint.2019.01.064
doi: 10.1016/j.envint.2019.01.064
Deserti M, Raffaelli K, Ramponi L, Carbonara C, Agostini C, Amorati R, Arvani B, Giovannini G, Maccaferri S, Poluzzi V, Stortini M, Trentini A, Tugnoli S, Vasconi M (2020) Report 2 Covid-19. Studio preliminare degli effetti delle misure Covid-19 sulle emissioni in atmosfera e sulla qualità dell’aria nel bacino Padano. https://www.lifeprepair.eu/wp-content/uploads/2020/09/Sintesi_rapporto_2_QA_Lockdown_Aug2020_no_rev.pdf
Donzelli G, Cioni L, Cancellieri M, Llopis Morales A, Morales Suárez-Varela MM (2020) The effect of the Covid-19 lockdown on air quality in three Italian medium-sized cities. Atmosphere 11:1118. https://doi.org/10.3390/atmos11101118
doi: 10.3390/atmos11101118
Driscoll CT, Driscoll KM, Mitchell MJ, Raynal DJ (2003) Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ Pollut 123:327–336. https://doi.org/10.1016/S0269-7491(03)00019-8
doi: 10.1016/S0269-7491(03)00019-8
Elser JJ, Andersen T, Baron JS, Bergström A-K, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009) Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837. https://doi.org/10.1126/science.1176199
doi: 10.1126/science.1176199
Escudero-Oñate C (2018) Intercomparison 1832: pH, conductivity, alkalinity, NO3-N, Cl, SO4, Ca, Mg, Na, K, TOC, Tot-P, Al, Fe, Mn, Cd, Pb, Cu, Ni, and Zn. ICP Waters report 137/2018: 72 pp.
European Environment Agency (2014) Air pollution fact sheet 2014 – Italy. https://www.eea.europa.eu/themes/air/air-pollution-country-fact-sheets-2014/italy-air-pollutant-emissions-country-factsheet
European Parliament and Council (2001) Directive 2001/81/EC of 23 October 2001 on national emission ceilings for certain atmospheric pollutants. Official Journal of the European Union l 309:22–30
European Parliament and Council (2016) Directive 2016/2284 of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Official Journal of the European Union L. 344 of 17.12.2016.
Fenn ME, Haeuber R, Tonnessen GS, Baron JS, Grossman-Clarke S, Hope D, Jaffe DA, Copeland S, Geiser L, Rueth HM, Sickman JO (2003) Nitrogen emissions, deposition, and monitoring in the Western United States. Bioscience 53:391–403. https://doi.org/10.1641/0006-3568(2003)053[0391:NEDAMI]2.0.CO;2
doi: 10.1641/0006-3568(2003)053[0391:NEDAMI]2.0.CO;2
Garmo ØA, Skjelkvåle, de Wit HA, Colombo L, Curtis C, Fölster J, Hoffmann A, Hruška J, Høgåsen T, Jeffries DS, Keller WB, Krám P, Majer V, Monteith DT, Paterson AM, Rogora M, Rzychon D, Steingruber S, Stoddard JL, Vuorenmaa J, Worsztynowicz A (2014) Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut 225:1880. https://doi.org/10.1007/s11270-014-1880-6
Grange SK, Hüglin C, Emmenegger L (2020) Influence of COVID-19 lockdowns on Switzerland’s air quality. https://empa-interim.github.io/empa.interim/swiss_air_quality_and_covid_19.html . Last compiled on August 24, 2020 15:04 CEST
Guevara M, Jorba O, Soret A, Petetin H, Bowdalo D, Serradell K, Tena C, Denier van der Gon H, Kuenen J, Peuch V-H, Pérez García-Pando C (2021) Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns. Atmos Chem Phys 21:773–797. https://doi.org/10.5194/acp-21-773-2021,2021
doi: 10.5194/acp-21-773-2021,2021
Habibi H, Awal R, Fares A, Ghahremannejad M (2020) COVID-19 and the improvement of the global air quality: the bright side of a pandemic. Atmosphere 11:1279. https://doi.org/10.3390/atmos11121279
doi: 10.3390/atmos11121279
Heldstab J, Betschart M, Herren M, Notter B (2014) Switzerland’s informative inventory report 2014. Submission of March 2014 to the United Nations ECE Secretariat. Berne, Federal Office for the Environment:299 pp.
Kaste Ø, Austnes K, de Wit HA (2020) Streamwater responses to reduced nitrogen deposition at four small upland catchments in Norway. Ambio 49:1759–1770. https://doi.org/10.1007/s13280-020-01347-3
doi: 10.1007/s13280-020-01347-3
Keene WC, Galloway JN, Likens GE, Deviney FA, Mikkelsen KN, Moody JL, Maben JR (2015) Atmospheric wet deposition in remote regions: benchmarks for environmental change. J Armos Sci 72:2947–2978. https://doi.org/10.1175/JAS-D-14-0378.1
doi: 10.1175/JAS-D-14-0378.1
Kopáček J, Prochdzkovci L, Stuchlik E, Blazka P (1995) The nitrogen phosphorus relationship in mountain lakes: influence of atmospheric input, watershed, and pH. Limnol Oceanogr 40:930–937. https://doi.org/10.4319/lo.1995.40.5.0930
doi: 10.4319/lo.1995.40.5.0930
Kvaeven B, Ulstein MJ, Skjelkvåle BL, Raddum GG, Hovind H (2001) ICP waters — an International Programme for Surface Water Monitoring. Water Air Soil Pollut 130:775–780. https://doi.org/10.1023/A:1013802122401
doi: 10.1023/A:1013802122401
Jonson JE, Fagerli H, Scheuschner T, Tsyro S (2021) Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030. Atmos Chem Phys Discuss [preprint] https://doi.org/10.5194/acp-2021-342
Lepori F, Keck F (2012) Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio 41:235–246. https://doi.org/10.1007/s13280-012-0250-0
doi: 10.1007/s13280-012-0250-0
Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CMB, Puchalski MA, Gay DA, Collett JL (2016) Increasing importance of deposition of reduced nitrogen in the United States. PNAS 113:5874–5879. https://doi.org/10.1073/pnas.1525736113
doi: 10.1073/pnas.1525736113
Liu F, Wang M, Zheng M (2021) Effects of COVID-19 lockdown on global air quality and health. Sci Total Environ 755:142533. https://doi.org/10.1016/j.scitotenv.2020.142533
doi: 10.1016/j.scitotenv.2020.142533
Lovarelli D, Conti C, Finzi A, Bacenetti J, Guarino M (2020) Describing the trend of ammonia, particulate matter and nitrogen oxides: the role of livestock activities in northern Italy during Covid-19 quarantine. Environ Res 191:110048. https://doi.org/10.1016/j.envres.2020.110048
doi: 10.1016/j.envres.2020.110048
Manenti R, Mori E, Di Canio V, Mercurio S, Picone M, Caffi M, Brambilla M, Ficetola GF, Rubolini D (2020) The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol Conserv 249:108728. https://doi.org/10.1016/j.biocon.2020.108728
doi: 10.1016/j.biocon.2020.108728
Marchetto A, Mosello R, Psenner R, Bendetta G, Boggero A, Tait D, Tartari G (1995) Factors affecting water chemistry of alpine lakes. Aquat Sci 57:81–89. https://doi.org/10.1007/BF00878028
doi: 10.1007/BF00878028
Masetti M, Nghiem SV, Sorichetta A, Stevenazzi S, Fabbri P, Pola M, Filippini M, Brakenridge GR (2015) Urbanization affects air and water in Italy’s Po Plain. Eos 96. https://doi.org/10.1029/2015EO037575
Menut L, Bessagnet B, Siour G, Mailler S, Pennel R, Cholakian A (2020) Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci Total Environ 741:140426. https://doi.org/10.1016/j.scitotenv.2020.140426
doi: 10.1016/j.scitotenv.2020.140426
Mosello R, Brizzio MC, Kotzias D, Marchetto A, Rembges D, Tartari G (2002) The chemistry of atmospheric deposition in Italy in the framework of the National Programme for Forest Ecosystems Control (CONECOFOR). J Limnol 61:77–92. https://doi.org/10.4081/jlimnol.2002.s1.77
doi: 10.4081/jlimnol.2002.s1.77
Mosello R, Marchetto A, Brizzio MC, Rogora M, Tartari GA (2000) Results from the Italian participation in the international co-operative programme on assessment and monitoring of acidification of rivers and lakes (ICP waters). J Limnol 59:47–54. https://doi.org/10.4081/jlimnol.2000.47
doi: 10.4081/jlimnol.2000.47
Oleksy IA, Baron JS, Leavitt PR, Spaulding SA (2020) Nutrients and warming interact to force mountain lakes into unprecedented ecological states. Proc R Soc B 2872020030420200304. https://doi.org/10.1098/rspb.2020.0304
Patterson EJK, Jayanthi M, Malleshappa H, Immaculate Jeyasanta K, Laju RL, Patterson J, Diraviya Raj K, Mathews G, Marimuthu AS, Grimsditch G (2021) COVID-19 lockdown improved the health of coastal environment and enhanced the population of reef-fish. Mar Pollut Bull:112124. https://doi.org/10.1016/j.marpolbul.2021.112124 .
Putaud J, Pozzoli L, Pisoni E, Martins Dos Santos S, Lagler F, Lanzani GG, Dal Santo U, Colette A (2021) Impacts of the COVID-19 lockdown on air pollution at regional and urban background sites in northern Italy. Atmos Chem Phys 21:7597–7609. https://doi.org/10.5194/acp-21-7597-2021
doi: 10.5194/acp-21-7597-2021
Rogora M, Colombo L, Marchetto A, Mosello R, Steingruber S (2016) Temporal and spatial patterns in the chemistry of wet deposition in Southern Alps. Atm Envir 146:44–54. https://doi.org/10.1016/j.atmosenv.2016.06.025
doi: 10.1016/j.atmosenv.2016.06.025
Rogora M, Colombo L, Lepori F, Marchetto A, Steingruber S, Tornimbeni O (2013) Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water Air Soil Pollut 224:1746. https://doi.org/10.1007/s11270-013-1746-3
doi: 10.1007/s11270-013-1746-3
Rogora M, Somaschini L, Marchetto A, Mosello R, Tartari GA, Paro L (2020) Decadal trends in water chemistry of Alpine lakes in calcareous catchments driven by climate change. Sci Total Environ 708:135180. https://doi.org/10.1016/j.scitotenv.2019.135180
doi: 10.1016/j.scitotenv.2019.135180
Rogora M, Arisci S, Marchetto A (2012) The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy. Sci Total Environ 417–418C:219–228. https://doi.org/10.1016/j.scitotenv.2011.12.067
Romano D, Bernetti A, Cóndor RD, De Lauretis R, Di Cristofaro E, Lena F, Gagna A, Gonella B, Pantaleoni M, Peschi E, Taurino E, Vitullo M (2014) Italian emission inventory 1990–2012. Informative inventory report. Rome, Institute for Environmental Protection and Research:157 pp.
Rutz C, Loretto MC, Bates AE, Davidson SC, Duarte CM, Jetz W, Johnson M, Kato A, Kays R, Mueller T, Primack RB, Ropert-Coudert Y, Tucker MA, Wikelski M, Cagnacci F (2020) COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat Ecol Evol 4:1156–1159. https://doi.org/10.1038/s41559-020-1237-z
doi: 10.1038/s41559-020-1237-z
Saidi H, Ciampittiello M, Dresti C, Ghiglieri G (2013) The climatic characteristics of extreme precipitations for short-term intervals in the watershed of Lake Maggiore. Theor Appl Climatol 113:1–15. https://doi.org/10.1007/s00704-012-0768-x
doi: 10.1007/s00704-012-0768-x
Schindler DW (1988) Effects of acid rain on freshwater ecosystems. Science 239:149–157
doi: 10.1126/science.239.4836.149
Schrimpf MB, Des Brisay PG, Johnston A, Smith AC, Sánchez-Jasso J, Robinson BG, Warrington MH, Mahony NA, Horn AG, Strimas-Mackey M, Fahrig L, Koper N (2021) Reduced human activity during COVID-19 alters avian land use across North America. Sci Adv 7:eabf5073. https://doi.org/10.1126/sciadv.abf5073
doi: 10.1126/sciadv.abf5073
Shafeeque M, Arshad A, Elbeltagi A, Sarwar A, Bao Pham Q, Nasir Khan S, Dilawar A, Al-Ansari N (2021) Understanding temporary reduction in atmospheric pollution and its impacts on coastal aquatic system during COVID-19 lockdown: a case study of South Asia. Geomat Nat Haz Risk 12(1):560–580. https://doi.org/10.1080/19475705.2021.1885503
doi: 10.1080/19475705.2021.1885503
Shi Z, Song C, Liu B, Lu G, Xu J, Van Vu T, Elliot RJR, Li W, Bloss WJ, Harrison RM (2021) Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci Adv 7:eabd6696. https://doi.org/10.1126/sciadv.abd6696
Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyíri A, Richter C, Semeena VS, Tsyro S, Tuovinen J-P, Valdebenito Á, Wind P (2012) 615 The EMEP MSC-W chemical transport model: technical description. Atmos Chem Phys 12(616):7825–7865. https://doi.org/10.5194/acp-12-7825-2012
doi: 10.5194/acp-12-7825-2012
Skjelkvåle BL, Stoddard J, Jeffries D, Tørseth K, Høgåsen T, Bowman J, Mannio J, Monteith D, Mosello R, Rogora M, Rzychon D, Vesely J, Wieting J, Wilander A, Worsztynowicz A (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 137:165–176. https://doi.org/10.1016/j.envpol.2004.12.023
doi: 10.1016/j.envpol.2004.12.023
Slemmons K, Saros J, Simon K (2013) The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ Sci-Proc Imp 15:1794–1806. https://doi.org/10.1039/C3EM00243H
doi: 10.1039/C3EM00243H
Steingruber S (2015) Deposition of acidifying and eutrophying pollutants in Southern Switzerland from 1988 to 2013. Bollettino della Società ticinese di scienze naturali. 103:37–45. ISSN: 0379–1254
Steingruber S (2018) Acidifying deposition in Southern Switzerland. Monitoring, maps and trends 1983–2017. Ufficio dell’aria, del clima e delle energie rinnovabili. Repubblica e Cantone Ticino, Dipartimento del territorio:54 pp. https://m4.ti.ch/fileadmin/DT/temi/aria/monitoraggio/Acidifying_Deposition_Southern_Switzerland_1983-2017.pdf
Steingruber SM, Bernasconi SM, Valenti G (2021) Climate change-induced changes in the chemistry of a high-altitude mountain lake in the Central Alps. Aquat Geochem 27:105–126. https://doi.org/10.1007/s10498-020-09388-6
doi: 10.1007/s10498-020-09388-6
Stoddard J, Jeffries D, Lükewille A, Clair A, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578. https://doi.org/10.1038/44114
doi: 10.1038/44114
Tiberti R, Nelli L, Marchetto A, Tartari G, Wienckowski E, Rogora M (2019) Multi-year trends and determinants of the hydrochemistry of high mountain lakes in the Western Italian Alps. Aquat Sci 81:54. https://doi.org/10.1007/s00027-019-0650-3
doi: 10.1007/s00027-019-0650-3
Tokatlı C, Varol M (2021) Impact of the COVID-19 lockdown period on surface water quality in the Meriç-Ergene River Basin. Northwest Turkey Environ Res 197:111051. https://doi.org/10.1016/j.envres.2021.111051
doi: 10.1016/j.envres.2021.111051
Venter ZS, Aunan K, Chowdhury S, Lelieveld J (2020) COVID-19 lockdowns cause global air pollution declines. PNAS 117:18984–18990. https://doi.org/10.1073/pnas.2006853117
doi: 10.1073/pnas.2006853117
Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Karlsson GP, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos AJ, Vanguelova E, Benham Sue; Meesenburg H; Nicolas M, Kowalska A; Apuhtin V; Napa U, Lachmanova Z; Kristoefel F; Bleeker A; Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atm Envir 95:363–374. https://doi.org/10.1016/j.atmosenv.2014.06.054
doi: 10.1016/j.atmosenv.2014.06.054
Williams MW, Knauf M, Cory R, Caine N, Liu F (2007) Nitrate content and potential microbial signature of rock glacier outflow, Colorado front range. Earth Surf Process Landf 32:1032–1047. https://doi.org/10.1002/esp.1455
doi: 10.1002/esp.1455
Wyche KP, Nichols M, Parfitt H, Beckett P, Gregg DJ, Smallbone KL, Monks PS (2021) Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown. Sci Total Environ 755:142526. https://doi.org/10.1016/j.scitotenv.2020.142526
doi: 10.1016/j.scitotenv.2020.142526
Yunus AP, Masago Y, Hijioka Y (2020) COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci Total Environ 731:139012. https://doi.org/10.1016/j.scitotenv.2020.139012
doi: 10.1016/j.scitotenv.2020.139012
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New York: Springer:574 pp. https://doi.org/10.1007/978-0-387-87458-6