Data-driven RRAM device models using Kriging interpolation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 Apr 2022
Historique:
received: 21 12 2021
accepted: 16 03 2022
entrez: 9 4 2022
pubmed: 10 4 2022
medline: 10 4 2022
Statut: epublish

Résumé

A two-tier Kriging interpolation approach is proposed to model jump tables for resistive switches. Originally developed for mining and geostatistics, its locality of the calculation makes this approach particularly powerful for modeling electronic devices with complex behavior landscape and switching noise, like RRAM. In this paper, a first Kriging model is used to model and predict the mean in the signal, followed up by a second Kriging step used to model the standard deviation of the switching noise. We use 36 synthetic datasets covering a broad range of different mean and standard deviation Gaussian distributions to test the validity of our approach. We also show the applicability to experimental data obtained from TiO

Identifiants

pubmed: 35396453
doi: 10.1038/s41598-022-09556-4
pii: 10.1038/s41598-022-09556-4
pmc: PMC8993845
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5963

Subventions

Organisme : George Washington University
ID : Cross-Disciplinary Research Fund
Organisme : George Washington University
ID : University Facilitating Fund
Organisme : Office of Naval Research
ID : N00014-20-1-2031

Informations de copyright

© 2022. The Author(s).

Références

Merrikh Bayat, F., Hoskins, B. & Strukov, D. B. Phenomenological modeling of memristive devices. Appl. Phys. A 118, 779–786 (2015).
doi: 10.1007/s00339-015-8993-7
Biolek, Z., Biolek, D. & Biolková, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering 18, 6 (2009).
Yakopcic, C., Taha, T. M., Subramanyam, G. & Pino, R. E. Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In The 2013 International Joint Conference on Neural Networks (IJCNN) 1–7 (2013). doi: https://doi.org/10.1109/IJCNN.2013.6706773 .
Jiang, Z. et al. A compact model for metal–oxide resistive random access memory with experiment verification. IEEE Trans. Electron Dev. 63, 1884–1892 (2016).
doi: 10.1109/TED.2016.2545412
Puglisi, F. M., Pacchioni, L., Zagni, N. & Pavan, P. Energy-efficient logic-in-memory 1-bit full adder enabled by a physics-based RRAM compact model. in 2018 48th European Solid-State Device Research Conference (ESSDERC) 50–53 (2018). doi: https://doi.org/10.1109/ESSDERC.2018.8486886 .
Bengel, C. et al. Variability-aware modeling of filamentary oxide-based bipolar resistive switching cells using SPICE level compact models. IEEE Trans. Circuits Syst. I: Regul. Pap. 67, 4618–4630 (2020).
doi: 10.1109/TCSI.2020.3018502
Ambrogio, S., Balatti, S., Gilmer, D. C. & Ielmini, D. Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Dev. 61, 2378–2386 (2014).
doi: 10.1109/TED.2014.2325531
Messaris, I. et al. A data-driven verilog—A ReRAM model. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37, 3151–3162 (2018).
doi: 10.1109/TCAD.2018.2791468
Gao, B., Kang, J., Liu, L., Liu, X. & Yu, B. A physical model for bipolar oxide-based resistive switching memory based on ion-transport-recombination effect. Appl. Phys. Lett. 98, 232108 (2011).
doi: 10.1063/1.3599490
Strukov, D. B., Alibart, F. & Stanley Williams, R. Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012).
doi: 10.1007/s00339-012-6902-x
Kim, S., Choi, S., Lee, J. & Lu, W. D. Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. ACS Nano 8, 10262–10269 (2014).
pubmed: 25255038 doi: 10.1021/nn503464q
La Torre, C., Zurhelle, A. F., Breuer, T., Waser, R. & Menzel, S. Compact modeling of complementary switching in oxide-based ReRAM devices. IEEE Trans. Electron Dev. 66, 1268–1275 (2019).
doi: 10.1109/TED.2019.2892997
Kim, S. et al. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013).
pubmed: 23604263 pmcid: 3631947 doi: 10.1038/srep01680
Bersuker, G. et al. Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110, 124518 (2011).
doi: 10.1063/1.3671565
Ielmini, D., Nardi, F. & Cagli, C. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22, 254022 (2011).
pubmed: 21572207 doi: 10.1088/0957-4484/22/25/254022
Larentis, S., Nardi, F., Balatti, S., Gilmer, D. C. & Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Trans. Electron Dev. 59, 2468–2475 (2012).
doi: 10.1109/TED.2012.2202320
González-Cordero, G. et al. A new compact model for bipolar RRAMs based on truncated-cone conductive filaments—A Verilog-A approach. Semicond. Sci. Technol. 31, 115013 (2016).
doi: 10.1088/0268-1242/31/11/115013
Butcher, B. et al. Connecting the physical and electrical properties of Hafnia-based RRAM. In 2013 IEEE International Electron Devices Meeting 22.2.1–22.2.4 (2013). doi: https://doi.org/10.1109/IEDM.2013.6724682 .
Guan, X., Yu, S. & Wong, H.-S.P. On the switching parameter variation of metal-oxide RRAM—Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Dev. 59, 1172–1182 (2012).
doi: 10.1109/TED.2012.2184545
Pan, F., Yin, S. & Subramanian, V. A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Dev. Lett. 32, 949–951 (2011).
doi: 10.1109/LED.2011.2143691
Menzel, S. Comprehensive modeling of electrochemical metallization memory cells. J. Comput. Electron. 16, 1017–1037 (2017).
doi: 10.1007/s10825-017-1051-2
Aldana, S. et al. Resistive switching in HfO
doi: 10.1088/1361-6463/ab7bb6
Abbaspour, E., Menzel, S. & Jungemann, C. Studying the switching variability in redox-based resistive switching devices. J. Comput. Electron. 19, 1426–1432 (2020).
doi: 10.1007/s10825-020-01537-y
Abbaspour, E., Menzel, S., Hardtdegen, A., Hoffmann-Eifert, S. & Jungemann, C. KMC simulation of the electroforming, set and reset processes in redox-based resistive switching devices. IEEE Trans. Nanotechnol. 17, 1181–1188 (2018).
doi: 10.1109/TNANO.2018.2867904
Padovani, A., Larcher, L., Pirrotta, O., Vandelli, L. & Bersuker, G. Microscopic modeling of HfOx RRAM operations: From forming to switching. IEEE Trans. Electron Dev. 62, 1998–2006 (2015).
doi: 10.1109/TED.2015.2418114
Padovani, A., Gao, D. Z., Shluger, A. L. & Larcher, L. A microscopic mechanism of dielectric breakdown in SiO
doi: 10.1063/1.4979915
Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498–3507 (2015).
doi: 10.1109/TED.2015.2439635
Niroula, J. et al. Piecewise empirical model (PEM) of resistive memory for pulsed analog and neuromorphic applications. J. Comput. Electron. 16, 1144–1153 (2017).
doi: 10.1007/s10825-017-1107-3
Sidler, S. et al. Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Impact of conductance response. In 2016 46th European Solid-State Device Research Conference (ESSDERC) 440–443 (IEEE, 2016). doi: https://doi.org/10.1109/ESSDERC.2016.7599680 .
Marinella, M. J. et al. Multiscale co-design analysis of energy, latency, area, and accuracy of a ReRAM analog neural training accelerator. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, 86–101 (2018).
doi: 10.1109/JETCAS.2018.2796379
Gong, N. et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat. Commun. 9, 2102 (2018).
pubmed: 29844421 pmcid: 5974407 doi: 10.1038/s41467-018-04485-1
Stathopoulos, S., Serb, A., Khiat, A., Ogorzałek, M. & Prodromakis, T. A memristive switching uncertainty model. IEEE Trans. Electron Dev. 66, 2946–2953 (2019).
doi: 10.1109/TED.2019.2918102
Bollen, K. A. & Barb, K. H. Pearson’s R and coarsely categorized measures. Am. Sociol. Rev. 46, 232 (1981).
doi: 10.2307/2094981
Virkar, Y. & Clauset, A. Power-law distributions in binned empirical data. Ann. Appl. Stat. 8, 89–119 (2014).
doi: 10.1214/13-AOAS710
van Leeuwen, J., Smeets, J. B. J. & Belopolsky, A. V. Forget binning and get SMART: Getting more out of the time-course of response data. Atten. Percept. Psychophys. 81, 2956–2967 (2019).
pubmed: 31214973 pmcid: 6856044 doi: 10.3758/s13414-019-01788-3
Kolmogoroff, A. Interpolation und extrapolation von stationaeren zufaelligen Folgen. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 5, 3–14 (1941).
Krige, D. G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 52, 119–139 (1951).
Matheron, G. Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963).
doi: 10.2113/gsecongeo.58.8.1246
Montero, J.-M., Fernández-Avilés, G. & Mateu, J. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging (Wiley, 2015).
doi: 10.1002/9781118762387
Sacks, J., Welch, W. J., Mitchell, T. J. & Wynn, H. P. Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989).
Rasmussen, C. E. Evaluation of Gaussian Processes and Other Methods for Non-linear Regression (University of Toronto, 1997).
Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2005).
doi: 10.7551/mitpress/3206.001.0001
Passos, F. et al. Physical vs. surrogate models of passive RF devices. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 117–120 (IEEE, 2015). doi: https://doi.org/10.1109/ISCAS.2015.7168584 .
Okobiah, O., Mohanty, S. & Kougianos, E. Geostatistical-inspired fast layout optimisation of a nano-CMOS thermal sensor. IET Circuits Dev. Syst. 7, 253–262 (2013).
doi: 10.1049/iet-cds.2012.0358
You, H., Yang, M., Wang, D. & Jia, X. Kriging Model combined with latin hypercube sampling for surrogate modeling of analog integrated circuit performance. In 2009 10th International Symposium on Quality Electronic Design 554–558 (2009). doi: https://doi.org/10.1109/ISQED.2009.4810354 .
Journel, A. G. & Rossi, M. E. When do we need a trend model in kriging?. Math. Geol. 21, 715–739 (1989).
doi: 10.1007/BF00893318
Chen, H., Loeppky, J. L., Sacks, J. & Welch, W. J. Analysis methods for computer experiments: How to assess and what counts?. Stat. Sci. 31, 40–60 (2016).
doi: 10.1214/15-STS531
Xiao, Q., Wang, L. & Xu, H. Application of kriging models for a drug combination experiment on lung cancer. Stat. Med. 38, 236–246 (2019).
pubmed: 30225920 doi: 10.1002/sim.7971
Song, J., Dixit, H., Behin-Aein, B., Kim, C. H. & Taylor, W. Impact of process variability on write error rate and read disturbance in STT-MRAM devices. IEEE Trans. Magn. 56, 1–11 (2020).
Wu, D., Kunishima, I., Roberts, S. & Gruverman, A. Spatial variations in local switching parameters of ferroelectric random access memory capacitors. Appl. Phys. Lett. 95, 092901 (2009).
doi: 10.1063/1.3192354
Be Belmonte, A. et al. Origin of the current discretization in deep reset states of an Al
doi: 10.1063/1.4883856
Lanza, M., Smets, Q., Huyghebaert, C. & Li, L. J. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 1–5 (2020).
doi: 10.1038/s41467-020-19053-9
Rasheed, F., Hefenbrock, M., Beigl, M., Tahoori, M. B. & Aghassi-Hagmann, J. Variability modeling for printed inorganic electrolyte-gated transistors and circuits. IEEE Trans. Electron Dev. 66, 146–152 (2018).
doi: 10.1109/TED.2018.2867461
Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
pubmed: 20192230 doi: 10.1021/nl904092h
Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37, 3067–3080 (2018).
doi: 10.1109/TCAD.2018.2789723
Roustant, O., Ginsbourger D., Deville Y. DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. J. Stat. Softw. 51(1), 1–55 (2012).
Massey, F. J. The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).
doi: 10.1080/01621459.1951.10500769
Lilliefors, H. W. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).
doi: 10.1080/01621459.1967.10482916
Steinskog, D. J., Tjøstheim, D. B. & Kvamstø, N. G. A cautionary note on the use of the Kolmogorov-Smirnov test for normality. Mon. Weather Rev. 135, 1151–1157 (2007).
doi: 10.1175/MWR3326.1
Gretton, A., Borgwardt, K. M., Rasch, M., Scholkopf, B. & Smola, A. J. A kernel method for the two-sample-problem. Adv. Neural Inf. Process. Syst. (NeurIPS) 19, 513–520 (2006).
Xiao, Y. A fast algorithm for two-dimensional Kolmogorov–Smirnov two sample tests. Computational Statistics & Data Analysis 105, 53–58 (2017). R package available at https://cran.r-project.org/web/packages/Peacock.test/Peacock.test.pdf .
You, K. maotai: Tools for Matrix Algebra, Optimization and Inference (2021).
Muhammad, E.-S. Transport of Information-Carriers in Semiconductors and Nanodevices (IGI Global, 2017).
Khandelwal, S. Physics-based compact models: An emerging trend in simulation-based GaN HEMT power amplifier design. In 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON) 1–4 (IEEE, 2019).
Sun, W. et al. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10, 3453 (2019).
pubmed: 31371705 pmcid: 6672015 doi: 10.1038/s41467-019-11411-6
Hajri, B., Aziza, H., Mansour, M. M. & Chehab, A. RRAM device models: A comparative analysis with experimental validation. IEEE Access 7, 168963–168980 (2019).
doi: 10.1109/ACCESS.2019.2954753
Pérez-Ávila, A. J. et al. Behavioral modeling of multilevel HfO2-based memristors for neuromorphic circuit simulation. In 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS) 1–6 (2020). https://doi.org/10.1109/DCIS51330.2020.9268652 .
Pérez, E. et al. Optimization of multi-level operation in RRAM arrays for in-memory computing. Electronics 10, 1084 (2021).
doi: 10.3390/electronics10091084

Auteurs

Imtiaz Hossen (I)

Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA.

Mark A Anders (MA)

National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.

Lin Wang (L)

Department of Statistics, The George Washington University, Washington, DC, 20052, USA.

Gina C Adam (GC)

Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA. ginaadam@gwu.edu.

Classifications MeSH