Mesoporous Silica-Coated Gold Nanoparticles for Multimodal Imaging and Reactive Oxygen Species Sensing of Stem Cells.
Journal
ACS applied nano materials
ISSN: 2574-0970
Titre abrégé: ACS Appl Nano Mater
Pays: United States
ID NLM: 101726750
Informations de publication
Date de publication:
25 Mar 2022
25 Mar 2022
Historique:
received:
29
10
2021
accepted:
25
02
2022
entrez:
4
4
2022
pubmed:
5
4
2022
medline:
5
4
2022
Statut:
ppublish
Résumé
Stem cell (SC)-based therapies hold the potential to revolutionize therapeutics by enhancing the body's natural repair processes. Currently, there are only three SC therapies with marketing authorization within the European Union. To optimize outcomes, it is important to understand the biodistribution and behavior of transplanted SCs in vivo. A variety of imaging agents have been developed to trace SCs; however, they mostly lack the ability to simultaneously monitor the SC function and biodistribution at high resolutions. Here, we report the synthesis and application of a nanoparticle (NP) construct consisting of a gold NP core coated with rhodamine B isothiocyanate (RITC)-doped mesoporous silica (AuMS). The MS layer further contained a thiol-modified internal surface and an amine-modified external surface for dye conjugation. Highly fluorescent AuMS of three different sizes were successfully synthesized. The NPs were non-toxic and efficiently taken up by limbal epithelial SCs (LESCs). We further showed that we can functionalize AuMS with a reactive oxygen species (ROS)-sensitive fluorescent dye using two methods, loading the probe into the mesopores, with or without additional capping by a lipid bilayer, and by covalent attachment to surface and/or mesoporous-functionalized thiol groups. All four formulations displayed a ROS concentration-dependent increase in fluorescence. Further, in an ex vivo SC transplantation model, a combination of optical coherence tomography and fluorescence microscopy was used to synergistically identify AuMS-labeled LESC distribution at micrometer resolution. Our AuMS constructs allow for multimodal imaging and simultaneous ROS sensing of SCs and represent a promising tool for in vivo SC tracing.
Identifiants
pubmed: 35372794
doi: 10.1021/acsanm.1c03640
pmc: PMC8961743
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3237-3251Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Cell Signal. 2012 May;24(5):981-90
pubmed: 22286106
Nat Rev Nephrol. 2021 Feb;17(2):128-144
pubmed: 32948857
Tissue Eng Part C Methods. 2013 Jul;19(7):531-7
pubmed: 23151007
Int J Nanomedicine. 2018 Nov 20;13:7711-7725
pubmed: 30538454
Anal Chem. 2007 Jun 1;79(11):4215-21
pubmed: 17458937
Nano Lett. 2005 Jan;5(1):113-7
pubmed: 15792423
ACS Nano. 2012 Aug 28;6(8):6829-42
pubmed: 22797484
IET Nanobiotechnol. 2017 Jun;11(4):454-462
pubmed: 28530196
Circulation. 2004 Nov 23;110(21):3378-83
pubmed: 15557385
J Clin Invest. 2011 Jul;121(7):2768-80
pubmed: 21670497
Talanta. 2013 Mar 30;107:408-15
pubmed: 23598242
Nanotechnology. 2016 Sep 2;27(35):355601
pubmed: 27454145
J Biochem Biophys Methods. 2005 Dec 31;65(2-3):45-80
pubmed: 16297980
Nano Lett. 2020 Jan 8;20(1):101-108
pubmed: 31585502
Toxicol Appl Pharmacol. 2006 Dec 15;217(3):252-9
pubmed: 17112558
Stem Cells Dev. 2015 May 15;24(10):1150-63
pubmed: 25603196
Rheumatology (Oxford). 2008 Jan;47(1):22-30
pubmed: 18077486
ACS Omega. 2018 Dec 17;3(12):17496-17510
pubmed: 31458354
Small. 2009 Jun;5(12):1408-13
pubmed: 19296554
Acta Pharm Sin B. 2018 Mar;8(2):165-177
pubmed: 29719777
Nanomedicine. 2015 Feb;11(2):313-27
pubmed: 25461284
Acta Biomater. 2018 Jul 1;74:397-413
pubmed: 29775731
ACS Nano. 2015 Oct 27;9(10):10489-97
pubmed: 26370658
Eye (Lond). 2022 Feb;36(2):379-391
pubmed: 34272509
J Am Chem Soc. 2010 Jan 20;132(2):552-7
pubmed: 20017538
ACS Nano. 2017 Nov 28;11(11):10883-10893
pubmed: 28960957
Stem Cells Int. 2016;2016:9798374
pubmed: 26788074
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Biochim Biophys Acta. 2008 Feb;1778(2):423-32
pubmed: 18054323
Theranostics. 2017 Apr 10;7(7):1820-1834
pubmed: 28638470
Part Fibre Toxicol. 2011 Jan 15;8:1
pubmed: 21235812
Int J Mol Sci. 2020 Oct 29;21(21):
pubmed: 33137927
Small. 2017 Oct;13(38):
pubmed: 28791769
Sci Rep. 2016 Nov 02;6:36481
pubmed: 27805062
J Phys Chem B. 2006 Apr 13;110(14):7238-48
pubmed: 16599493
Nanoscale. 2019 Jan 17;11(3):799-819
pubmed: 30603750
Small. 2014 Mar 12;10(5):964-72
pubmed: 24108667
Stem Cells Int. 2017;2017:2934149
pubmed: 29138636
FASEB J. 2005 Dec;19(14):2014-6
pubmed: 16230334
Redox Biol. 2017 Aug;12:758-769
pubmed: 28426982
Ophthalmic Res. 2018;60(3):139-151
pubmed: 29794471
J Adv Res. 2018 Jun 01;14:73-79
pubmed: 30023134
Anal Chem. 2016 Dec 20;88(24):12294-12302
pubmed: 28193035
Nanomedicine. 2017 Jul;13(5):1761-1772
pubmed: 28343018
Dalton Trans. 2015 May 7;44(17):7752-6
pubmed: 25828393
J Am Chem Soc. 2009 Dec 2;131(47):17042-3
pubmed: 19891442
Chem Mater. 2008 Jul 8;20(13):4167-4169
pubmed: 19079760
Nanomaterials (Basel). 2020 Apr 05;10(4):
pubmed: 32260586
Chem Commun (Camb). 2016 Feb 4;52(10):2165-8
pubmed: 26699659
Front Bioeng Biotechnol. 2016 Jun 13;4:47
pubmed: 27379231
Appl Microbiol Biotechnol. 2015 Dec;99(23):9907-22
pubmed: 26373727
Nanomedicine. 2015 Aug;11(6):1407-16
pubmed: 25819884
Anal Chem. 2011 Feb 15;83(4):1193-6
pubmed: 21261275
Mol Cell Biol. 2002 Jul;22(14):5157-72
pubmed: 12077343
Phys Med Biol. 2010 Jan 7;55(1):191-206
pubmed: 20009192
Sci Rep. 2016 Mar 18;6:23337
pubmed: 26987475
Small. 2016 Mar 23;12(12):1578-92
pubmed: 26807551
Biomaterials. 2020 Nov;258:120267
pubmed: 32781325
J Am Chem Soc. 2009 Aug 19;131(32):11361-70
pubmed: 19722649
Dalton Trans. 2019 May 7;48(18):5940-5951
pubmed: 30209497
Biomater Sci. 2020 May 6;8(9):2488-2506
pubmed: 32211626
Nanoscale. 2020 Feb 14;12(6):3630-3636
pubmed: 31998910