Sea anemone Bartholomea annulata venom inhibits voltage-gated Na
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 03 2022
30 03 2022
Historique:
received:
28
10
2021
accepted:
17
03
2022
entrez:
31
3
2022
pubmed:
1
4
2022
medline:
2
4
2022
Statut:
epublish
Résumé
Toxin production in nematocysts by Cnidaria phylum represents an important source of bioactive compounds. Using electrophysiology and, heterologous expression of mammalian ion channels in the Xenopus oocyte membrane, we identified two main effects produced by the sea anemone Bartholomea annulata venom. Nematocysts isolation and controlled discharge of their content, revealed that venom had potent effects on both voltage-dependent Na
Identifiants
pubmed: 35354863
doi: 10.1038/s41598-022-09339-x
pii: 10.1038/s41598-022-09339-x
pmc: PMC8967859
doi:
Substances chimiques
Cnidarian Venoms
0
Receptors, GABA-A
0
gamma-Aminobutyric Acid
56-12-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5352Informations de copyright
© 2022. The Author(s).
Références
Santhanam, R. Biology of Marine Cnidarians [Phylum Cnidaria (= Coelenterata)]. In Biology and Ecology of Venomous Marine Cnidarians (ed. Santhanam, R.) 7–27 (Springer, 2020).
doi: 10.1007/978-981-15-1603-0_2
Brinkman, D. L. et al. Venom proteome of the box jellyfish Chironex fleckeri. PLoS ONE 7, e47866 (2012).
pubmed: 23236347
pmcid: 3517583
doi: 10.1371/journal.pone.0047866
Diaz-Garcia, C. M. et al. Toxins from Physalia physalis (Cnidaria) raise the intracellular Ca
pubmed: 22830340
doi: 10.2174/092986712803833308
Remigante, A. et al. Impact of scyphozoan venoms on human health and current first aid options for stings. Toxins 10, 133–151 (2018).
pmcid: 5923299
doi: 10.3390/toxins10040133
Fautin, D. G. Structural diversity, systematics, and evolution of cnidae. Toxicon 54, 1054–1064 (2009).
pubmed: 19268491
doi: 10.1016/j.toxicon.2009.02.024
Honma, T. & Shiomi, K. Peptide toxins in sea anemones: Structural and functional aspects. Mar. Biotechnol. 8, 1–10 (2006).
doi: 10.1007/s10126-005-5093-2
Morabito, R., Marino, A. & La Spada, G. Nematocytes’ activation in Pelagia noctiluca (Cnidaria, Scyphozoa) oral arms. J. Comp. Physiol. A 198, 419–426 (2012).
doi: 10.1007/s00359-012-0720-7
Beckman, A. & Özbek, S. The nematocyst: A molecular map of the Cnidarian stinging organelle. Int. J. Dev. Biol. 56, 577–582 (2012).
doi: 10.1387/ijdb.113472ab
Jouiaei, M. et al. Ancient venom systems: A review on Cnidaria toxins. Toxins 7, 2251–2271 (2015).
pubmed: 26094698
pmcid: 4488701
doi: 10.3390/toxins7062251
Frazão, B., Vasconcelos, V. & Antunes, A. Sea anemone (Cnidaria, Anthozoa, Actinaria) toxins: An overview. Mar. Drugs 10, 1812–1851 (2012).
pubmed: 23015776
pmcid: 3447340
doi: 10.3390/md10081812
Madio, B., Undheim, E. A. B. & King, G. F. Revisting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J. Proteom. 166, 83–92 (2017).
doi: 10.1016/j.jprot.2017.07.007
Béress, L. & Béress, R. Purification of three polypeptides with neuro- and cardiotoxic activity from the sea anemone Anemonia sulcata. Toxicon 13, 359–367 (1975).
pubmed: 1876
doi: 10.1016/0041-0101(75)90196-8
Castañeda, O. et al. Characterization of a potassium channel toxin from the Caribbean sea anemone Stichodactyla helianthus. Toxicon 33, 603–613 (1995).
pubmed: 7660365
doi: 10.1016/0041-0101(95)00013-C
Bruhn, T. et al. Isolation and characterization of five neurotoxic and cardiotoxic polypeptides from the sea anemone Anthopleura elegantissima. Toxicon 39, 693–702 (2001).
pubmed: 11072049
doi: 10.1016/S0041-0101(00)00199-9
Torres, M. et al. Electrophysiological and hemolytic activity elicited by the venom of the jellyfish Cassiopea xamachana. Toxicon 39, 1297–1307 (2001).
pubmed: 11384717
doi: 10.1016/S0041-0101(01)00081-2
Anderluh, G. & Maĉek, P. Cytolitic peptide and protein toxins from sea anemones (Anthozoa: Actinaria). Toxicon 40, 111–124 (2001).
doi: 10.1016/S0041-0101(01)00191-X
Marino, A., Morabito, R., Pizzata, T. & La Spada, G. Effect of various factors on Pelagia noctiluca (Cnidaria, Scyphozoa) crude venom-induced haemolysis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 151, 144–149 (2008).
pubmed: 18619552
doi: 10.1016/j.cbpa.2008.06.013
Lazcano-Pérez, F. et al. A purified Palythoa venom fraction delays sodium current inactivation in sympathetic neurons. Toxicon 82, 112–116 (2014).
pubmed: 24593961
doi: 10.1016/j.toxicon.2014.02.013
Morabito, R. et al. Crude venom from nematocysts of Pelagia noctiluca (Cnidaria: Scyphozoa) elicits a sodium conductance in the plasma membrane of mammalian cells. Sci. Rep. 7, 41065 (2017).
pubmed: 28112211
pmcid: 5253680
doi: 10.1038/srep41065
Ames, C. L. et al. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Commun. Biol. 3, 67 (2020).
pubmed: 32054971
pmcid: 7018847
doi: 10.1038/s42003-020-0777-8
Moran, Y. et al. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemone. Proc. R. Soc. B 279, 1351–1358 (2012).
pubmed: 22048953
doi: 10.1098/rspb.2011.1731
Columbus-Shenkar, Y. Y. et al. Dynamics of venom composition across a complex life cycle. Elife 7, e35014 (2018).
pubmed: 29424690
pmcid: 5832418
doi: 10.7554/eLife.35014
Macrander, J., Broe, M. & Daly, M. Tissue-specific venom composition and differential gene expression in sea anemone. Genome. Biol. Evol. 8, 2358–2375 (2016).
pubmed: 27389690
pmcid: 5010892
doi: 10.1093/gbe/evw155
Grajales, A. & Rodríguez, E. Elucidating the evolutionary relationship of the Aiptasiidae, a widespread cnidarian-dinoflagellate model system (Cnidaria: Anthozoa: Actiniaria: Metridioidea). Mol. Phylogenet. Evol. 94, 252–263 (2016).
pubmed: 26375331
doi: 10.1016/j.ympev.2015.09.004
Briones-Fourzán, P., Pérez-Ortiz, M., Negrete-Soto, F., Barradas-Ortiz, C. & Lozano-Álvarez, E. Ecological traits of Caribbean Sea anemones and symbiotic crustaceans. Mar. Ecol. Prog. Ser. 470, 55–68 (2012).
doi: 10.3354/meps10030
González-Muñoz, R., Nuno, S., Sánchez-Rodríguez, J., Rodríguez, E. & Segura-Puertas, L. First inventory of sea anemones (Cnidaria: Actinaria) of the Mexican Caribbean. Zootaxa 3556, 1–38 (2012).
doi: 10.11646/zootaxa.3556.1.1
O’Reilly, E. E. & Chadwick, N. E. Population dynamics of corkscrew sea anemones Bartholomea annulata in the Florida Keys. Mar. Ecol. Prog. Ser. 567, 109–123 (2017).
doi: 10.3354/meps12032
Calgren, O. A survey of the Ptychodactiaria, Corallimorpharia and Actinaria. Kungl. Svenska Vetenskapsakad. Handl. 3, 1–121 (1949).
Sánchez-Rodríguez, J., Zugasti, A., Santamaría, A., Galván-Arzate, S. & Segura-Puertas, L. Isolation, partial purification and characterization of active polypeptide from the sea anemone Bartholomea annulata. Basic Clin. Pharmacol. Toxicol. 99, 116–121 (2006).
pubmed: 16918711
doi: 10.1111/j.1742-7843.2006.pto_428.x
Morales-Landa, J. L. et al. Antimicrobial, antiprotozoal and toxic activities of cnidarian extracts from the Mexican Caribbean Sea. Pharm. Biol. 45, 37–43 (2007).
doi: 10.1080/13880200601026325
Nesher, N. et al. AdE-1, a new inotropic Na
pubmed: 23356888
doi: 10.1042/BJ20121623
Nesher, N., Zlotkin, E. & Hochner, B. The sea anemone toxin AdE-1 modifies both sodium and potassium currents of rat cardiomyocytes. Biochem. J. 461, 51–59 (2014).
pubmed: 24749540
doi: 10.1042/BJ20131454
Lazcano-Pérez, F., Arellano, R. O., Garay, E., Arreguín-Espinosa, R. & Sánchez-Rodríguez, J. Electrophysiological activity of a neurotoxic fraction from the venom of box jellyfish Carybdea marsupialis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 177–182 (2017).
pubmed: 27815048
doi: 10.1016/j.cbpc.2016.10.010
Bernáldez, J. et al. Electrophysiological characterization of a novel small peptide from the venom of Conus californicus that targets voltage-gated neuronal Ca
pubmed: 20920515
doi: 10.1016/j.toxicon.2010.09.015
Parker, I., Sumikawa, K. & Miledi, R. Activation of a common effector system by different brain neurotransmitter receptors in Xenopus Oocytes. Proc. R. Soc. Lond. B 231, 37–45 (1987).
pubmed: 2888117
doi: 10.1098/rspb.1987.0034
Miledi, R., Parker, I. & Sumikawa, K. Transplanting receptors from brains into oocytes. In Fidia Research Foundation Neuroscience Award Lectures, 57–90 (Raven Press, 1989).
Arellano, R. O., Robles-Martínez, L., Serrano-Flores, B., Vázquez-Cuevas, F. & Garay, E. Agonist-activated Ca
pubmed: 22213197
doi: 10.1002/jcp.24046
Arellano, R. O. & Miledi, R. Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes. J. Gen. Physiol. 102, 833–857 (1993).
pubmed: 8301259
doi: 10.1085/jgp.102.5.833
Arellano, R. O., Woodward, R. M. & Miledi, R. Ion channels and membrane receptors in follicle-enclosed Xenopus oocytes. In Ion Channels Vol. 4 (ed. Narahashi, T.) 203–259 (Springer, 1996).
doi: 10.1007/978-1-4899-1775-1_6
Gundersen, C. B., Miledi, R. & Parker, I. Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes. Proc. R. Soc. Lond. B 220, 131–140 (1983).
pubmed: 6140681
doi: 10.1098/rspb.1983.0092
Gundersen, C. B., Miledi, R. & Parker, I. Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes. Nature 308, 421–424 (1984).
pubmed: 6323990
doi: 10.1038/308421a0
Bloom, D. A., Burnett, J. W. & Alderslade, P. Partial purification of box jellyfish (Chironex fleckeri) nematocyst venom isolated at the beachside. Toxicon 36, 1075–1085 (1998).
pubmed: 9690776
doi: 10.1016/S0041-0101(98)00096-8
Narahashi, T. Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54, 813–889 (1974).
pubmed: 4153804
doi: 10.1152/physrev.1974.54.4.813
Narahashi, T. Pharmacology of tetrodotoxin. J. Toxicol. Toxin rev. 20, 67–84 (2001).
doi: 10.1081/TXR-100102537
Lee, C. H. & Ruben, P. C. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2, 407–412 (2008).
pubmed: 19098433
doi: 10.4161/chan.2.6.7429
Ordaz, P. R. et al. GABA
pubmed: 33288547
pmcid: 7816040
doi: 10.1124/molpharm.120.000091
Martínez-Torres, A. & Miledi, R. Expression of γ-aminobutyric acid ρ1 and ρ1Δ450 as gene fusion with the green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 98, 1947–1951 (2001).
pubmed: 11172056
pmcid: 29362
Lazcano-Pérez, F., Hernández-Guzmán, U., Sánchez-Rodríguez, J. & Arreguín-Espinosa, R. Cnidarian neurotoxic peptides affecting central nervous system targets. Cent. Nerv. Syst. Agents Med. Chem. 16, 173–182 (2016).
pubmed: 26201531
doi: 10.2174/1871524915666150722120915
Norton, R. S. Structures of sea anemone toxins. Toxicon 54, 1075–1088 (2009).
pubmed: 19285996
doi: 10.1016/j.toxicon.2009.02.035
Iglesias-Prieto, R., Govin, N. S. & Trench, R. K. Isolation and characterization of three membrane-bound chlorophyll-protein complexes from four dinoflagellate species. Philos. Trans. R. Soc. Lond. B 340, 381–392 (1993).
doi: 10.1098/rstb.1993.0080
Béress, R., Béress, L. & Wunderer, G. Purification and characterisation of four polypeptides with neurotoxic activity from Condylactis aurantiaca. Hope-Seyler’s Z Physiol. Chem. 357, 409–414 (1976).
doi: 10.1515/bchm2.1976.357.1.409
Rodríguez, A. A. et al. Peptide fingerprint of the neurotoxic fractions isolated from the secretions of sea anemone Stichodactyla helianthus and Bunodosoma granulifera. New members of the APETx-like family identified by a 454 pyrosequencing approach. Peptides 34, 26–38 (2012).
pubmed: 22015268
doi: 10.1016/j.peptides.2011.10.011
Moran, Y., Gordon, D. & Gurevitz, M. Sea anemone toxins affecting voltage-gated sodium channels—Molecular and evolutionary features. Toxicon 54, 1089–1101 (2009).
pubmed: 19268682
pmcid: 2807626
doi: 10.1016/j.toxicon.2009.02.028
Madio, B., King, G. E. & Undheim, E. A. B. Sea anemone toxins: A structural overview. Mar. Drugs 17, 325 (2019).
pmcid: 6627431
doi: 10.3390/md17060325
D’Ambra, I. & Lauritano, C. A. Review of toxins from Cnidaria. Mar. Drugs 18, 507 (2020).
pmcid: 7600780
doi: 10.3390/md18100507
Aneiros, A. et al. A potassium channel toxin from the secretion of the sea anemone Bunodosoma granulifera. Isolation, amino acid sequence and biological activity. Biochim. Biophys. Acta 1157, 86–92 (1993).
pubmed: 8098956
doi: 10.1016/0304-4165(93)90082-J
Ständker, L. et al. A new toxin from the sea anemone Condylactis gigantea with effect on sodium channel inactivation. Toxicon 48, 211–220 (2006).
pubmed: 16814340
doi: 10.1016/j.toxicon.2006.05.001
Zaharenko, A. J. et al. Characterization of selectivity and pharmacophores of type 1 sea anemone toxins by screening seven Na
pubmed: 21802465
doi: 10.1016/j.peptides.2011.07.008
Liao, Q., Feng, Y., Yang, B. & Lee, S.-Y. Cnidarian peptide neurotoxins: A new source of various ion channel modulators or blockers against central nervous system disease. Drug Discov. Today 24, 189–197 (2019).
pubmed: 30165198
doi: 10.1016/j.drudis.2018.08.011
Catteral, W. A. & Béress, L. Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore. J. Biol. Chem. 253, 7393–7396 (1978).
doi: 10.1016/S0021-9258(17)34513-1
Ahern, C. A., Payandeh, J., Bosman, F. & Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147, 1–24 (2016).
pubmed: 26712848
pmcid: 4692491
doi: 10.1085/jgp.201511492
Ravindran, V. S., Kannan, L. & Venkateshvaran, K. Biological activity of sea anemone proteins: I. Toxicity and histopathology. Indian J. Exp. Biol. 47, 1225–1232 (2010).
Israel, M. R., Tay, B., Deuis, J. R. & Vetter, I. Sodium channels and venom peptide pharmacology. Adv. Pharmacol. 127, 87–108 (2017).
Dudley, S. C. et al. μ-Conotoxin GIIIA interactions with the voltage-gated Na
pubmed: 11055996
pmcid: 2229485
doi: 10.1085/jgp.116.5.679
Kubota, T., Dang, B., Carvalho-de-Souza, J. L., Correa, A. M. & Benzanilla, F. Nav channel binder containing a specific conjugation-site based on a low toxicity β-scorpion toxin. Sci. Rep. 7, 16329 (2017).
pubmed: 29180755
pmcid: 5703725
doi: 10.1038/s41598-017-16426-x
Hernández-Plata, E. et al. Overexpression of Nav 1.6 channels is associated with the invasion capacity of human cervical cancer. Int. J. Cancer 130, 2013–2023 (2012).
pubmed: 21630263
doi: 10.1002/ijc.26210
Israel, M. R., Morgan, M., Tay, B. & Deuis, J. R. Toxins as tools: Fingerprinting neuronal pharmacology. Neurosci. Lett. 679, 4–14 (2018).
pubmed: 29425731
doi: 10.1016/j.neulet.2018.02.001
Kozlov, S. Animal toxins for channelopathy treatment. Neuropharmacology 132, 83–97 (2018).
pubmed: 29080794
doi: 10.1016/j.neuropharm.2017.10.031
Jayathilake, J. M. N. J. & Gunathilake, K. V. K. Cnidarian toxins: Recent evidences for potential therapeutic uses. Eur. Zool. J. 87(1), 708–713 (2020).
doi: 10.1080/24750263.2020.1837268
Johnston, G. A. R. Muscimol as an ionotropic GABA receptor agonist. Neurochem. Res. 39, 1942–1947 (2014).
pubmed: 24473816
doi: 10.1007/s11064-014-1245-y
Kudryavtsev, D. S. et al. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J. Biol. Chem. 290, 22747–22758 (2015).
pubmed: 26221036
pmcid: 4566246
doi: 10.1074/jbc.M115.648824
Scappaticci, A. A. & Kass-Simon, G. NMDA and GABA
doi: 10.1016/j.cbpa.2008.04.606
Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).
pubmed: 2440339
doi: 10.1016/0003-2697(87)90021-2
Dumont, J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–179 (1972).
pubmed: 4109871
doi: 10.1002/jmor.1051360203
Pérez-Samartín, A. et al. Inwardly rectifying K
pubmed: 28345117
doi: 10.1007/s11064-017-2242-8
Cisneros-Mejorado, A. et al. Demyelination-remyelination of the rat caudal cerebellar peduncle evaluated with magnetic resonance imaging. Neuroscience 439, 255–267 (2020).
pubmed: 31299350
doi: 10.1016/j.neuroscience.2019.06.042
Barres, B. A. et al. Cell death and control cell survival in the oligodendrocyte lineage. Cell 70, 31–46 (1992).
pubmed: 1623522
doi: 10.1016/0092-8674(92)90531-G
Arellano, R. O. et al. Axon-to-glia interaction regulates GABA
pubmed: 26538574
doi: 10.1124/mol.115.100594
Restano-Cassulini, R., Garcia, W., Paniagua-Solís, J. E. & Possani, L. D. Antivenom evaluation by electrophysiological analysis. Toxins 9, 74 (2017).
pmcid: 5371829
doi: 10.3390/toxins9030074