A Chirality-Based Quantum Leap.

chiral imprinting chirality electron transport photoexcitation probe microscopy quantum biology quantum information quantum materials spintronics

Journal

ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589

Informations de publication

Date de publication:
26 Apr 2022
Historique:
pubmed: 24 3 2022
medline: 24 3 2022
entrez: 23 3 2022
Statut: ppublish

Résumé

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

Identifiants

pubmed: 35318848
doi: 10.1021/acsnano.1c01347
pmc: PMC9278663
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

4989-5035

Références

ACS Nano. 2014 Sep 23;8(9):9181-7
pubmed: 25162921
Nature. 2012 Jan 18;481(7382):492-6
pubmed: 22258506
Phys Chem Chem Phys. 2020 Oct 7;22(38):21570-21582
pubmed: 32697241
Nat Mater. 2014 Sep;13(9):862-6
pubmed: 24997737
Nano Lett. 2019 Aug 14;19(8):5253-5259
pubmed: 31265313
Nat Chem. 2015 Jul;7(7):591-6
pubmed: 26100808
ACS Appl Mater Interfaces. 2018 Sep 12;10(36):30680-30688
pubmed: 30113158
J Chem Theory Comput. 2016 May 10;12(5):2242-9
pubmed: 27045571
ACS Nano. 2013 Sep 24;7(9):7824-32
pubmed: 23952969
Science. 2019 Sep 27;365(6460):1475-1478
pubmed: 31604278
J Am Chem Soc. 2020 Oct 28;142(43):18304-18309
pubmed: 33048539
Science. 2021 Mar 26;371(6536):1368-1374
pubmed: 33632891
J Am Chem Soc. 2020 Apr 1;142(13):6432-6438
pubmed: 32176496
Nano Lett. 2018 Aug 8;18(8):4633-4640
pubmed: 29533637
Nat Chem. 2015 Jul;7(7):543-4
pubmed: 26100801
J Phys Chem C Nanomater Interfaces. 2020 May 28;124(21):11716-11721
pubmed: 32499842
Nature. 2002 Oct 31;419(6910):906-9
pubmed: 12410305
Sci Rep. 2015 Jul 10;5:12108
pubmed: 26159423
Nature. 2017 Jul 19;547(7663):298-305
pubmed: 28726818
Sci Rep. 2016 Feb 25;6:22185
pubmed: 26911547
Phys Rev Lett. 2021 Aug 6;127(6):067201
pubmed: 34420323
J Phys Chem Lett. 2019 Nov 21;10(22):7126-7132
pubmed: 31657931
Phys Lett A. 2018 Jan 5;382(1):33-43
pubmed: 29403145
Trends Biochem Sci. 2018 Feb;43(2):108-123
pubmed: 29269020
Annu Rev Immunol. 2015;33:169-200
pubmed: 25493333
Angew Chem Int Ed Engl. 2007;46(47):8948-68
pubmed: 17935098
Phys Chem Chem Phys. 2006 Jan 7;8(1):63-7
pubmed: 16482245
Proc Natl Acad Sci U S A. 1998 May 26;95(11):5935-41
pubmed: 9600895
Nano Lett. 2020 Dec 9;20(12):8696-8703
pubmed: 33215497
Nature. 2017 Mar 22;543(7646):525-528
pubmed: 28332519
Science. 1999 Feb 5;283(5403):814-6
pubmed: 9933157
ACS Nano. 2018 Feb 27;12(2):954-964
pubmed: 29338193
Nature. 2019 Jul;571(7764):230-233
pubmed: 31235949
Nano Lett. 2016 Jul 13;16(7):4583-9
pubmed: 27336320
Biomolecules. 2019 Dec 28;10(1):
pubmed: 31905610
Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1653-1658
pubmed: 31621990
Nano Lett. 2020 Jan 8;20(1):790-798
pubmed: 31846342
Phys Rev Lett. 2015 Oct 23;115(17):176801
pubmed: 26551134
J Phys Chem Lett. 2020 May 7;11(9):3660-3666
pubmed: 32298118
Nano Lett. 2012 May 9;12(5):2542-7
pubmed: 22458608
J Am Chem Soc. 1977 May 25;99(11):3622-5
pubmed: 858868
Nat Nanotechnol. 2019 Feb;14(2):137-140
pubmed: 30617309
J Am Chem Soc. 2012 Jul 11;134(27):11251-60
pubmed: 22676136
Nano Lett. 2012 Feb 8;12(2):977-83
pubmed: 22263754
Phys Rev Lett. 2008 Dec 5;101(23):238103
pubmed: 19113598
J Theor Biol. 2016 Feb 21;391:102-12
pubmed: 26682627
Nat Mater. 2013 Sep;12(9):802-7
pubmed: 23793159
Opt Express. 2011 Oct 10;19(21):19861-74
pubmed: 21996994
ACS Nano. 2021 Oct 26;15(10):15538-15566
pubmed: 34609836
J Phys Chem B. 2010 Nov 18;114(45):14140-8
pubmed: 19691305
Angew Chem Int Ed Engl. 2007;46(34):6450-2
pubmed: 17645276
Nature. 2018 Nov;563(7733):671-675
pubmed: 30405237
J Phys Chem Lett. 2012 Aug 16;3(16):2178-87
pubmed: 26295768
Nature. 2017 Jan 25;541(7638):473-480
pubmed: 28128249
J Phys Chem Lett. 2021 Jul 15;12(27):6341-6347
pubmed: 34228926
ACS Sens. 2019 Jul 26;4(7):1732-1748
pubmed: 31267734
Adv Mater. 2020 Oct;32(41):e1907151
pubmed: 33252162
Nanoscale. 2019 May 16;11(19):9327-9334
pubmed: 30911741
J Chem Theory Comput. 2017 Mar 14;13(3):1188-1198
pubmed: 28177229
J Phys Chem Lett. 2021 Mar 25;12(11):2805-2808
pubmed: 33710900
Nature. 2006 Aug 24;442(7105):904-7
pubmed: 16929295
Nano Lett. 2021 Apr 14;21(7):3026-3032
pubmed: 33759530
J Phys Chem Lett. 2018 Apr 19;9(8):2025-2030
pubmed: 29618210
Sci Rep. 2019 Aug 19;9(1):12028
pubmed: 31427693
ACS Nano. 2017 Mar 28;11(3):2313-2381
pubmed: 28290206
Chemistry. 2016 Mar 24;22(14):4878-88
pubmed: 26890266
Nature. 2018 Mar 21;555(7697):493-496
pubmed: 29565362
J Phys Chem B. 2006 Oct 5;110(39):19671-7
pubmed: 17004836
J Am Chem Soc. 2021 Mar 31;143(12):4625-4632
pubmed: 33735563
ACS Cent Sci. 2018 Mar 28;4(3):405-412
pubmed: 29632887
Front Chem. 2015 Feb 10;3:9
pubmed: 25713797
Nat Commun. 2020 Jul 15;11(1):3552
pubmed: 32669550
J Chem Phys. 2020 Jun 7;152(21):214105
pubmed: 32505170
Sci Rep. 2020 Feb 26;10(1):3439
pubmed: 32103036
Nat Mater. 2021 Mar;20(3):293-300
pubmed: 33139890
J Phys Chem Lett. 2018 Sep 20;9(18):5453-5459
pubmed: 30188726
ACS Nano. 2018 Nov 27;12(11):11426-11433
pubmed: 30407788
Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16979-83
pubmed: 16284253
Neuropharmacology. 2019 Mar 1;146:95-108
pubmed: 30471296
J Am Chem Soc. 2010 Jan 20;132(2):627-30
pubmed: 20014835
Nat Mater. 2021 May;20(5):638-644
pubmed: 33558719
Chem Sci. 2019 Mar 19;10(17):4598-4608
pubmed: 31123570
ACS Nano. 2021 Mar 23;15(3):3754-3807
pubmed: 33650433
Phys Rev Lett. 2010 Apr 23;104(16):163901
pubmed: 20482049
J Am Chem Soc. 2012 Dec 19;134(50):20218-21
pubmed: 23190265
Nat Commun. 2017 Feb 23;8:14567
pubmed: 28230054
Chem Sci. 2019 Apr 10;10(20):5246-5250
pubmed: 31191879
J Phys Chem A. 2020 Sep 17;124(37):7355-7372
pubmed: 32869999
ACS Nano. 2015 Mar 24;9(3):3377-84
pubmed: 25752750
Cold Spring Harb Perspect Biol. 2019 Mar 1;11(3):
pubmed: 30824575
Phys Rev Lett. 2020 Apr 24;124(16):166602
pubmed: 32383920
J Phys Condens Matter. 2017 Mar 15;29(10):103002
pubmed: 28145273
Nat Commun. 2016 Oct 03;7:12998
pubmed: 27694805
Nano Lett. 2018 Oct 10;18(10):6279-6285
pubmed: 30216716
Opt Express. 2011 Mar 14;19(6):4815-26
pubmed: 21445117
ACS Nano. 2020 Mar 24;14(3):2808-2816
pubmed: 32074454
ACS Nano. 2018 Apr 24;12(4):3892-3897
pubmed: 29617105
Sci Rep. 2017 Feb 07;7:41836
pubmed: 28169331
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14872-6
pubmed: 23980184
Sci Adv. 2017 May 17;3(5):e1602735
pubmed: 28560336
ACS Nano. 2019 Aug 27;13(8):8659-8668
pubmed: 31294546
Phys Rev Lett. 2012 May 25;108(21):218102
pubmed: 23003304
Acc Chem Res. 2009 Jun 16;42(6):809-19
pubmed: 19378940
Nat Nanotechnol. 2020 Nov;15(11):956-961
pubmed: 32807879
Science. 2016 Nov 18;354(6314):
pubmed: 27856851
Acc Chem Res. 2020 Mar 17;53(3):588-598
pubmed: 31913015
ACS Nano. 2021 Mar 23;15(3):5574-5579
pubmed: 33591720
J Chem Theory Comput. 2020 Dec 8;16(12):7357-7371
pubmed: 33167619
Nat Commun. 2019 Dec 6;10(1):5589
pubmed: 31811122
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3225-3230
pubmed: 29531058
Nat Commun. 2013;4:2256
pubmed: 23922081
J Chem Phys. 2013 Sep 21;139(11):114111
pubmed: 24070283
Science. 2018 Aug 24;361(6404):794-797
pubmed: 30139871
Adv Mater. 2019 Oct;31(40):e1904206
pubmed: 31423697
Nat Commun. 2015 Sep 23;6:8251
pubmed: 26394758
ACS Nano. 2016 Feb 23;10(2):1744-55
pubmed: 26743467
ACS Nano. 2020 Nov 24;14(11):15154-15160
pubmed: 33108721
J Chem Phys. 2020 Oct 28;153(16):165102
pubmed: 33138441
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2474-2478
pubmed: 28228525
J Am Chem Soc. 2019 Mar 6;141(9):3863-3874
pubmed: 30734553
Annu Rev Phys Chem. 2007;58:267-97
pubmed: 17067281
Nature. 2012 Apr 04;484(7392):78-81
pubmed: 22481360
Nat Nanotechnol. 2018 Dec;13(12):1167-1173
pubmed: 30397286
J Am Chem Soc. 2021 Sep 8;143(35):14235-14241
pubmed: 34460242
Nat Commun. 2016 Feb 26;7:10744
pubmed: 26916536
Sci Adv. 2020 Apr 29;6(18):eaaz2630
pubmed: 32494673
Nat Chem. 2016 May;8(5):484-90
pubmed: 27102683
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3367-75
pubmed: 25092336
Chem Rev. 2021 Mar 10;121(5):2780-2815
pubmed: 33151662
J Phys Chem Lett. 2021 Feb 11;12(5):1407-1412
pubmed: 33513302
ACS Nano. 2020 Nov 24;14(11):15983-15991
pubmed: 33136367
J Phys Chem Lett. 2012 Feb 16;3(4):536-542
pubmed: 22844553
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11658-62
pubmed: 25071198
ACS Nano. 2016 Sep 27;10(9):9000-8
pubmed: 27548516
Science. 2009 Sep 18;325(5947):1513-5
pubmed: 19696310
Opt Lett. 2018 Feb 1;43(3):435-438
pubmed: 29400808
Nature. 2017 Aug 31;548(7669):561-566
pubmed: 28846999
Light Sci Appl. 2020 Sep 2;9:139
pubmed: 32922765
J Chem Theory Comput. 2019 Jul 9;15(7):4180-4186
pubmed: 31125229
RSC Adv. 2020 Apr 20;10(26):15406-15429
pubmed: 35495425
Nat Mater. 2010 Mar;9(3):205-13
pubmed: 20168344
Annu Rev Phys Chem. 2015 Apr;66:263-81
pubmed: 25622190
Sci Adv. 2019 Dec 06;5(12):eaay0571
pubmed: 31840072
Nanoscale. 2014 Aug 21;6(16):9457-66
pubmed: 24841858
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15723-8
pubmed: 17895378
Science. 2011 Feb 18;331(6019):894-7
pubmed: 21330541
J Phys Condens Matter. 2020 May 13;32(20):205701
pubmed: 31945749
Nano Lett. 2016 Jan 13;16(1):218-26
pubmed: 26675052
ACS Nano. 2016 Sep 27;10(9):8571-7
pubmed: 27598057
Nat Nanotechnol. 2015 Sep;10(9):775-8
pubmed: 26214251
J Phys Chem Lett. 2021 Mar 25;12(11):2912-2921
pubmed: 33725453
Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):167-83
pubmed: 11296520
Sci Adv. 2019 Dec 13;5(12):eaax0024
pubmed: 31853494
J Chem Phys. 2009 Jul 7;131(1):014707
pubmed: 19586117
J Am Chem Soc. 2019 Dec 11;141(49):19198-19202
pubmed: 31702906
J Phys Chem A. 2009 Apr 23;113(16):4691-700
pubmed: 19239215
J Am Chem Soc. 2021 Sep 29;143(38):15508-15529
pubmed: 34533930
Biomaterials. 2017 Nov;146:13-28
pubmed: 28892752
J Am Chem Soc. 2020 Feb 19;142(7):3346-3350
pubmed: 32009396
Biochemistry. 2006 Jun 13;45(23):7389-403
pubmed: 16752928
Nature. 2020 Feb;578(7796):545-549
pubmed: 32103195
J Phys Chem Lett. 2020 Feb 20;11(4):1550-1557
pubmed: 32013436
Nano Lett. 2017 Aug 9;17(8):5099-5105
pubmed: 28715228
Nano Lett. 2020 Jan 8;20(1):585-591
pubmed: 31851826
Nat Commun. 2017 Oct 31;8(1):1205
pubmed: 29089492
ACS Nano. 2015 Dec 22;9(12):12035-44
pubmed: 26588477
Chaos. 2018 May;28(5):052101
pubmed: 29857689
Nature. 2007 Mar 29;446(7135):522-5
pubmed: 17392782
ACS Nano. 2016 Aug 23;10(8):8006-11
pubmed: 27428831
J Am Chem Soc. 2017 Jul 5;139(26):9038-9043
pubmed: 28609095
Science. 2018 Jun 22;360(6395):1331-1334
pubmed: 29748324
Science. 2011 Apr 15;332(6027):333-6
pubmed: 21493854
Nano Lett. 2021 Aug 11;21(15):6696-6702
pubmed: 34291928
Phys Rev Lett. 2021 Sep 17;127(12):126602
pubmed: 34597079
ACS Nano. 2018 Sep 25;12(9):9116-9125
pubmed: 30138559
Nano Lett. 2017 Nov 8;17(11):7125-7130
pubmed: 28990389
Nano Lett. 2016 Apr 13;16(4):2806-11
pubmed: 27027885
Life (Basel). 2019 Mar 16;9(1):
pubmed: 30884807
Nano Lett. 2020 Aug 12;20(8):6148-6154
pubmed: 32672980
Angew Chem Int Ed Engl. 2004 Nov 19;43(45):6148-52
pubmed: 15549761
J Phys Chem Lett. 2018 Oct 4;9(19):5753-5758
pubmed: 30212207
ACS Nano. 2017 Jul 25;11(7):7516-7526
pubmed: 28672111
Nat Commun. 2019 Jul 24;10(1):3297
pubmed: 31341164
J Chem Theory Comput. 2020 May 12;16(5):2914-2929
pubmed: 32271568
Nature. 2011 Apr 7;472(7341):69-73
pubmed: 21412237
Acc Chem Res. 2018 Oct 16;51(10):2565-2573
pubmed: 30289241
Nature. 2018 Apr;556(7701):360-365
pubmed: 29670265
Nano Lett. 2018 Jan 10;18(1):302-307
pubmed: 29240446
Science. 2020 May 15;368(6492):763-767
pubmed: 32409474
Nat Chem. 2015 Mar;7(3):221-6
pubmed: 25698331
Nano Lett. 2021 Aug 11;21(15):6496-6503
pubmed: 34297582
Data Brief. 2015 Mar 20;3:180-4
pubmed: 26217741
Chem Soc Rev. 2021 Oct 18;50(20):11208-11226
pubmed: 34522920
Adv Mater. 2020 Jun;32(22):e2001330
pubmed: 32319171
Phys Rev A. 1994 Dec;50(6):4767-4777
pubmed: 9911473
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):822-832
pubmed: 30873880
J Phys Chem Lett. 2021 Aug 19;12(32):7854-7858
pubmed: 34380316
Nature. 2009 Oct 1;461(7264):629-32
pubmed: 19718019
Phys Rev Lett. 2018 Nov 9;121(19):193903
pubmed: 30468599
J Am Chem Soc. 2019 Feb 6;141(5):2152-2160
pubmed: 30636401
J Am Chem Soc. 2020 Dec 2;142(48):20456-20462
pubmed: 33211484
Phys Rev Lett. 2010 Jun 4;104(22):226804
pubmed: 20867194
ACS Nano. 2020 Aug 25;14(8):10370-10375
pubmed: 32678570
Rep Prog Phys. 2019 Jan;82(1):016001
pubmed: 30421725
Phys Rev Lett. 2017 Dec 22;119(25):253203
pubmed: 29303341
Science. 2003 Aug 29;301(5637):1221-3
pubmed: 12947193
Chem Rev. 2015 Aug 12;115(15):7304-97
pubmed: 26189453
Chem Rev. 2018 Oct 24;118(20):10617-10625
pubmed: 30247025
J Phys Chem C Nanomater Interfaces. 2021 May 13;125(18):9875-9883
pubmed: 34055128
Phys Rev Lett. 2020 Mar 6;124(9):097202
pubmed: 32202863
J Am Chem Soc. 2019 Jan 9;141(1):123-126
pubmed: 30541275
Science. 2021 Mar 12;371(6534):1129-1133
pubmed: 33707260
Nanoscale. 2014 Apr 7;6(7):3737-41
pubmed: 24569696
Nat Commun. 2018 Jul 17;9(1):2763
pubmed: 30018283
Nano Lett. 2010 Jan;10(1):105-10
pubmed: 20000819
Nano Lett. 2011 Nov 9;11(11):4652-5
pubmed: 21961931
Adv Mater. 2016 Mar 9;28(10):1957-62
pubmed: 26742997
Phys Rev Lett. 2016 Aug 12;117(7):073002
pubmed: 27563957
Chimia (Aarau). 2018 Jun 27;72(6):411-417
pubmed: 29941078
Biotechnol J. 2019 Jan;14(1):e1800249
pubmed: 30117715
Adv Mater. 2020 Feb;32(7):e1904965
pubmed: 31922628
Analyst. 2015 Jan 21;140(2):386-406
pubmed: 25365823
Science. 2012 Nov 2;338(6107):640-3
pubmed: 23118185
Nano Lett. 2020 Feb 12;20(2):1218-1225
pubmed: 31960675
Small. 2017 Jan;13(2):
pubmed: 27753200
Phys Chem Chem Phys. 2018 Jan 3;20(2):1091-1097
pubmed: 29238765
Science. 2009 Feb 13;323(5916):915-9
pubmed: 19213914
Phys Rev Lett. 2017 Sep 29;119(13):136802
pubmed: 29341673
J Am Chem Soc. 2019 Sep 18;141(37):14707-14711
pubmed: 31411873
Science. 1990 Nov 16;250(4983):975-6
pubmed: 17746924
Adv Sci (Weinh). 2021 Jan 21;8(5):2003113
pubmed: 33717850
Nat Commun. 2017 Jan 25;8:14180
pubmed: 28120825
Phys Rev Lett. 2013 May 17;110(20):203906
pubmed: 25167414
Nat Commun. 2019 Nov 27;10(1):5394
pubmed: 31776340
Sci Adv. 2017 Apr 14;3(4):e1602531
pubmed: 28439549
J Am Chem Soc. 2009 Jun 24;131(24):8372-3
pubmed: 19476357
Nano Lett. 2013;13(12):6238-43
pubmed: 24219560
J Chem Phys. 2007 Oct 21;127(15):154110
pubmed: 17949135
J Chem Phys. 2019 Sep 28;151(12):125102
pubmed: 31575191
Small. 2016 Jan 27;12(4):432-7
pubmed: 26596516
Nano Lett. 2020 Oct 14;20(10):7077-7086
pubmed: 32786950
J Am Chem Soc. 2020 Oct 14;142(41):17572-17580
pubmed: 32938174
J Am Chem Soc. 2020 Jul 29;142(30):13030-13040
pubmed: 32602710
Light Sci Appl. 2019 Oct 2;8:90
pubmed: 31645934
Nat Commun. 2014 Aug 22;5:4705
pubmed: 25146588
Phys Rev Lett. 1995 Jun 12;74(24):4803-4806
pubmed: 10058603
Annu Rev Phys Chem. 2001;52:681-750
pubmed: 11326078
Chem Soc Rev. 2014 Aug 7;43(15):5211-33
pubmed: 24825540
Nano Lett. 2019 Aug 14;19(8):5167-5175
pubmed: 31361954
ACS Nano. 2018 Sep 25;12(9):9110-9115
pubmed: 30188691
Chem Soc Rev. 2015 Jul 7;44(13):4249-63
pubmed: 25714523
Annu Rev Phys Chem. 2019 Jun 14;70:275-299
pubmed: 31112458
ACS Nano. 2013 Jul 23;7(7):6321-9
pubmed: 23806025
J Chem Phys. 2015 May 21;142(19):194308
pubmed: 26001462
ACS Nano. 2021 Dec 28;15(12):20633-20642
pubmed: 34842409
J Am Chem Soc. 2018 Sep 19;140(37):11763-11770
pubmed: 30129752

Auteurs

Clarice D Aiello (CD)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.

John M Abendroth (JM)

Laboratory for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland.

Muneer Abbas (M)

Department of Microbiology, Howard University, Washington, D.C. 20059, United States.

Andrei Afanasev (A)

Department of Physics, George Washington University, Washington, D.C. 20052, United States.

Shivang Agarwal (S)

Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.

Amartya S Banerjee (AS)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.

David N Beratan (DN)

Departments of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States.

Jason N Belling (JN)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.

Bertrand Berche (B)

Laboratoire de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les Nancy, France.

Antia Botana (A)

Department of Physics, Arizona State University, Tempe, Arizona 85287, United States.

Justin R Caram (JR)

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.

Giuseppe Luca Celardo (GL)

Institute of Physics, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, 72570, Mexico.
Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.

Gianaurelio Cuniberti (G)

Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany.

Aitzol Garcia-Etxarri (A)

Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain.
IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.

Arezoo Dianat (A)

Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany.

Ismael Diez-Perez (I)

Department of Chemistry, Faculty of Natural and Mathematical Sciences, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom.

Yuqi Guo (Y)

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.

Rafael Gutierrez (R)

Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany.

Carmen Herrmann (C)

Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany.

Joshua Hihath (J)

Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States.

Suneet Kale (S)

School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.

Philip Kurian (P)

Quantum Biology Laboratory, Graduate School, Howard University, Washington, D.C. 20059, United States.

Ying-Cheng Lai (YC)

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States.

Tianhan Liu (T)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.

Alexander Lopez (A)

Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador.

Ernesto Medina (E)

Departamento de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador.

Vladimiro Mujica (V)

School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
Kimika Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain.

Ron Naaman (R)

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

Mohammadreza Noormandipour (M)

Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
TCM Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

Julio L Palma (JL)

Department of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States.

Yossi Paltiel (Y)

Applied Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

William Petuskey (W)

School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.

João Carlos Ribeiro-Silva (JC)

Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São Paulo, Brazil.

Juan José Saenz (JJ)

Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain.
IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.

Elton J G Santos (EJG)

Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.

Maria Solyanik-Gorgone (M)

Department of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States.

Volker J Sorger (VJ)

Department of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States.

Dominik M Stemer (DM)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.

Jesus M Ugalde (JM)

Kimika Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain.

Ana Valdes-Curiel (A)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.

Solmar Varela (S)

School of Chemical Sciences and Engineering, Yachay Tech University, 100119 Urcuquí, Ecuador.

David H Waldeck (DH)

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Michael R Wasielewski (MR)

Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States.

Paul S Weiss (PS)

California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, United States.

Helmut Zacharias (H)

Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.

Qing Hua Wang (QH)

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.

Classifications MeSH