Transcranial Direct Current Stimulation Enhances Neuroplasticity and Accelerates Motor Recovery in a Stroke Mouse Model.

biomarker brain-derived neurotrophic factor forelimb ischemia motor cortex personalized medicine transcranial direct current stimulation

Journal

Stroke
ISSN: 1524-4628
Titre abrégé: Stroke
Pays: United States
ID NLM: 0235266

Informations de publication

Date de publication:
05 2022
Historique:
pubmed: 17 3 2022
medline: 28 4 2022
entrez: 16 3 2022
Statut: ppublish

Résumé

More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex. Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms. Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulin-dependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCS-promoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker. The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower.

Sections du résumé

BACKGROUND
More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex.
METHODS
Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms.
RESULTS
Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulin-dependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCS-promoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker.
CONCLUSIONS
The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower.

Identifiants

pubmed: 35291824
doi: 10.1161/STROKEAHA.121.034200
doi:

Substances chimiques

Brain-Derived Neurotrophic Factor 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1746-1758

Auteurs

Valentina Longo (V)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Saviana Antonella Barbati (SA)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Agnese Re (A)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Fabiola Paciello (F)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Maria Bolla (M)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Marco Rinaudo (M)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Francesca Miraglia (F)

Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Italy (F.M., F.A., F.V., P.M.R.).

Francesca Alù (F)

Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Italy (F.M., F.A., F.V., P.M.R.).

Martina Gaia Di Donna (MG)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).

Fabrizio Vecchio (F)

Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Italy (F.M., F.A., F.V., P.M.R.).
eCampus University, Novedrate, Como, Italy (F.V.).

Paolo Maria Rossini (PM)

Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Italy (F.M., F.A., F.V., P.M.R.).

Maria Vittoria Podda (MV)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).
Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (M.V.P., C.G.).

Claudio Grassi (C)

Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).
Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (M.V.P., C.G.).

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH