Comparative Magnitude and Persistence of Humoral SARS-CoV-2 Vaccination Responses in the Adult Population in Germany.
Ad26COVS1
/ immunology
Antibodies, Neutralizing
/ immunology
Antibodies, Viral
/ immunology
Antibody Formation
/ immunology
COVID-19
/ immunology
Cross-Sectional Studies
Germany
Humans
Immunity, Humoral
/ immunology
SARS-CoV-2
/ growth & development
Seroepidemiologic Studies
Spike Glycoprotein, Coronavirus
/ immunology
Vaccination
/ methods
SARS-CoV-2
antibody persistence
longitudinal study
mRNA vaccines
population-based study
protective immunity
variants of concern
vector-based vaccines
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2022
2022
Historique:
received:
02
12
2021
accepted:
17
01
2022
entrez:
7
3
2022
pubmed:
8
3
2022
medline:
12
3
2022
Statut:
epublish
Résumé
Recent increases in SARS-CoV-2 infections have led to questions about duration and quality of vaccine-induced immune protection. While numerous studies have been published on immune responses triggered by vaccination, these often focus on studying the impact of one or two immunisation schemes within subpopulations such as immunocompromised individuals or healthcare workers. To provide information on the duration and quality of vaccine-induced immune responses against SARS-CoV-2, we analyzed antibody titres against various SARS-CoV-2 antigens and ACE2 binding inhibition against SARS-CoV-2 wild-type and variants of concern in samples from a large German population-based seroprevalence study (MuSPAD) who had received all currently available immunisation schemes. We found that homologous mRNA-based or heterologous prime-boost vaccination produced significantly higher antibody responses than vector-based homologous vaccination. Ad26.CoV2S.2 performance was particularly concerning with reduced titres and 91.7% of samples classified as non-responsive for ACE2 binding inhibition, suggesting that recipients require a booster mRNA vaccination. While mRNA vaccination induced a higher ratio of RBD- and S1-targeting antibodies, vector-based vaccines resulted in an increased proportion of S2-targeting antibodies. Given the role of RBD- and S1-specific antibodies in neutralizing SARS-CoV-2, their relative over-representation after mRNA vaccination may explain why these vaccines have increased efficacy compared to vector-based formulations. Previously infected individuals had a robust immune response once vaccinated, regardless of which vaccine they received, which could aid future dose allocation should shortages arise for certain manufacturers. Overall, both titres and ACE2 binding inhibition peaked approximately 28 days post-second vaccination and then decreased.
Identifiants
pubmed: 35251012
doi: 10.3389/fimmu.2022.828053
pmc: PMC8888837
doi:
Substances chimiques
Ad26COVS1
JT2NS6183B
Antibodies, Neutralizing
0
Antibodies, Viral
0
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
828053Informations de copyright
Copyright © 2022 Dulovic, Kessel, Harries, Becker, Ortmann, Griesbaum, Jüngling, Junker, Hernandez, Gornyk, Glöckner, Melhorn, Castell, Heise, Kemmling, Tonn, Frank, Illig, Klopp, Warikoo, Rath, Suckel, Marzian, Grupe, Kaiser, Traenkle, Rothbauer, Kerrinnes, Krause, Lange, Schneiderhan-Marra and Strengert.
Déclaration de conflit d'intérêts
NS-M was a speaker at Luminex user meetings in the past. The Natural and Medical Sciences Institute at the University of Tübingen is involved in applied research projects as a fee for services with the Luminex Corporation. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Infect Dis Ther. 2020 Dec;9(4):837-849
pubmed: 32886335
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
Cell Host Microbe. 2022 Jan 12;30(1):97-109.e5
pubmed: 34953513
Sci Rep. 2013 Nov 19;3:3259
pubmed: 24247282
N Engl J Med. 2021 Oct 7;385(15):1431-1433
pubmed: 34496195
Epidemiology. 2020 Nov;31(6):836-843
pubmed: 32841988
Sci Immunol. 2021 Apr 15;6(58):
pubmed: 33858945
Nat Med. 2021 Nov;27(11):2032-2040
pubmed: 34588689
Sci Rep. 2020 Sep 14;10(1):14991
pubmed: 32929138
N Engl J Med. 2021 Sep 2;385(10):951-953
pubmed: 34260834
BMJ. 2021 Mar 11;372:n699
pubmed: 33707182
Nat Med. 2021 Aug;27(8):1370-1378
pubmed: 34108716
Lancet. 2021 Jan 9;397(10269):99-111
pubmed: 33306989
N Engl J Med. 2021 Jun 10;384(23):2187-2201
pubmed: 33882225
Vaccine. 2021 Jul 5;39(30):4013-4024
pubmed: 34119350
Nat Rev Immunol. 2021 Oct;21(10):626-636
pubmed: 34373623
Clin Microbiol Infect. 2021 Oct;27(10):1516.e7-1516.e14
pubmed: 34111577
Sci Transl Med. 2020 Jul 1;12(550):
pubmed: 32513867
Science. 2020 Aug 7;369(6504):731-736
pubmed: 32540900
Nat Commun. 2022 Jan 10;13(1):128
pubmed: 35013206
Nat Med. 2021 Aug;27(8):1379-1384
pubmed: 34127854
JAMA. 2021 Oct 19;326(15):1533-1535
pubmed: 34459863
Lancet Infect Dis. 2020 Dec;20(12):1350-1351
pubmed: 32979317
BMJ. 2021 Nov 24;375:e067873
pubmed: 34819275
Emerg Infect Dis. 2022 Apr;28(4):743-750
pubmed: 35203113
Clin Infect Dis. 2022 Nov 30;75(11):1980-1992
pubmed: 35438175
Science. 2021 Oct 22;374(6566):eabj9853
pubmed: 34519540
Lancet. 2021 Sep 4;398(10303):856-869
pubmed: 34370971
Haematologica. 2021 Aug 01;106(8):2170-2179
pubmed: 34011137
Nat Med. 2021 Sep;27(9):1530-1535
pubmed: 34312554
Cell. 2021 Nov 11;184(23):5699-5714.e11
pubmed: 34735795
Sci Immunol. 2021 Oct 15;6(64):eabl4509
pubmed: 34623900
Front Immunol. 2020 Dec 18;11:610688
pubmed: 33391281
N Engl J Med. 2021 Feb 4;384(5):403-416
pubmed: 33378609
N Engl J Med. 2021 Jun 10;384(23):2259-2261
pubmed: 33822494
Nat Med. 2021 Jul;27(7):1205-1211
pubmed: 34002089
Nature. 2020 Aug;584(7821):443-449
pubmed: 32668443
MMWR Morb Mortal Wkly Rep. 2021 Sep 24;70(38):1337-1343
pubmed: 34555004
EBioMedicine. 2021 Aug;70:103524
pubmed: 34391096
Dtsch Arztebl Int. 2021 Dec 3;118(48):824-831
pubmed: 35191825
Lancet Reg Health Eur. 2021 Nov;10:100208
pubmed: 34514454
Nat Commun. 2021 Feb 19;12(1):1152
pubmed: 33608538
BMJ. 2021 May 5;373:n1114
pubmed: 33952445
JCI Insight. 2021 Aug 23;6(16):
pubmed: 34251356
MMWR Morb Mortal Wkly Rep. 2021 Sep 17;70(37):1284-1290
pubmed: 34529637
N Engl J Med. 2021 Jun 3;384(22):2092-2101
pubmed: 33835769
J Hosp Infect. 2021 Feb;108:120-134
pubmed: 33212126
Science. 2020 Jul 17;369(6501):330-333
pubmed: 32366695
GMS Hyg Infect Control. 2021 Apr 19;16:Doc15
pubmed: 34123703
Clin Infect Dis. 2022 Aug 24;75(1):e888-e891
pubmed: 34849655
JAMA Netw Open. 2021 Sep 1;4(9):e2126882
pubmed: 34559232
Vaccine. 2021 Jul 22;39(32):4423-4428
pubmed: 34210573
N Engl J Med. 2021 May 20;384(20):1885-1898
pubmed: 33725432
N Engl J Med. 2020 Dec 31;383(27):2603-2615
pubmed: 33301246
Nat Med. 2021 Sep;27(9):1525-1529
pubmed: 34262158
Nat Commun. 2021 May 25;12(1):3109
pubmed: 34035301
N Engl J Med. 2021 Oct 7;385(15):1355-1371
pubmed: 34496194
Lancet. 2021 Sep 18;398(10305):1038-1041
pubmed: 34391504