Temporal and Quantitative Transcriptomic Differences Define Sexual Dimorphism in Murine Postnatal Bone Aging.
BONE AGING
SEX‐SPECIFIC
TEMPORAL TRANSCRIPTOMIC CLUSTER ANALYSIS
Journal
JBMR plus
ISSN: 2473-4039
Titre abrégé: JBMR Plus
Pays: England
ID NLM: 101707013
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
31
08
2021
revised:
25
10
2021
accepted:
02
11
2021
entrez:
1
3
2022
pubmed:
2
3
2022
medline:
2
3
2022
Statut:
epublish
Résumé
Time is a central element of the sexual dimorphic patterns of development, pathology, and aging of the skeleton. Because the transcriptome is a representation of the phenome, we hypothesized that both sex and sex-specific temporal, transcriptomic differences in bone tissues over an 18-month period would be informative to the underlying molecular processes that lead to postnatal sexual dimorphism. Regardless of age, sex-associated changes of the whole bone transcriptomes were primarily associated not only with bone but also vascular and connective tissue ontologies. A pattern-based approach used to screen the entire Gene Expression Omnibus (GEO) database against those that were sex-specific in bone identified two coordinately regulated gene sets: one related to high phosphate-induced aortic calcification and one induced by mechanical stimulation in bone. Temporal clustering of the transcriptome identified two skeletal tissue-associated, sex-specific patterns of gene expression. One set of genes, associated with skeletal patterning and morphology, showed peak expression earlier in females. The second set of genes, associated with coupled remodeling, had quantitatively higher expression in females and exhibited a broad peak between 3 to 12 months, concurrent with the animals' reproductive period. Results of phenome-level structural assessments of the tibia and vertebrae, and in vivo and in vitro analysis of cells having osteogenic potential, were consistent with the existence of functionally unique, skeletogenic cell populations that are separately responsible for appositional growth and intramedullary functions. These data suggest that skeletal sexual dimorphism arises through sex-specific, temporally different processes controlling morphometric growth and later coupled remodeling of the skeleton during the reproductive period of the animal. © 2021 The Authors.
Identifiants
pubmed: 35229061
doi: 10.1002/jbm4.10579
pii: JBM410579
pmc: PMC8861981
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e10579Informations de copyright
© 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Références
Biostatistics. 2007 Jan;8(1):118-27
pubmed: 16632515
Calcif Tissue Int. 2010 Mar;86(3):192-201
pubmed: 20012269
J Bone Miner Res. 2019 Nov;34(11):2117-2132
pubmed: 31269275
Sci Rep. 2018 Sep 13;8(1):13756
pubmed: 30213970
Nat Med. 2018 Jun;24(6):823-833
pubmed: 29785024
J Endocrinol. 2010 Nov;207(2):127-34
pubmed: 20807726
Adv Exp Med Biol. 2019;1132:49-61
pubmed: 31037624
J Bone Miner Res. 2005 Jul;20(7):1085-92
pubmed: 15940361
J Bone Miner Res. 2010 Sep;25(9):2006-15
pubmed: 20499381
Nephrol Dial Transplant. 2015 Dec;30(12):1995-2005
pubmed: 26185049
Bone. 2012 Jul;51(1):168-80
pubmed: 22391215
BMC Bioinformatics. 2011 Sep 27;12:381
pubmed: 21951600
J Bone Miner Res. 2008 Mar;23(3):400-8
pubmed: 17997708
Autoimmun Rev. 2018 May;17(5):504-512
pubmed: 29526632
Nucleic Acids Res. 2003 Feb 15;31(4):e15
pubmed: 12582260
J Bone Miner Res. 2009 Feb;24(2):274-82
pubmed: 18847330
Endocrinology. 1988 Aug;123(2):681-6
pubmed: 3396505
J Bone Miner Res. 2011 Jan;26(1):100-12
pubmed: 20658561
Bioinformatics. 2019 Mar 1;35(5):778-786
pubmed: 30101356
Curr Osteoporos Rep. 2018 Apr;16(2):77-94
pubmed: 29508144
J Biomech. 2018 Aug 22;77:40-47
pubmed: 29961584
PLoS One. 2018 Jan 17;13(1):e0190909
pubmed: 29342188
PLoS One. 2009;4(5):e5393
pubmed: 19415118
Calcif Tissue Int. 2010 Jun;86(6):470-83
pubmed: 20405109
J Bone Miner Res. 2010 Mar;25(3):617-26
pubmed: 19888832
J Clin Endocrinol Metab. 2001 Oct;86(10):4576-84
pubmed: 11600506
J Bone Miner Res. 2007 Aug;22(8):1197-207
pubmed: 17488199
Nature. 2018 Oct;562(7725):133-139
pubmed: 30250253
J Cell Physiol. 2015 Feb;230(2):296-307
pubmed: 24962433
Bone. 2009 Feb;44(2):335-44
pubmed: 19013264
Med Pediatr Oncol. 2003 Sep;41(3):217-21
pubmed: 12868122
Nature. 2005 Dec 15;438(7070):932-6
pubmed: 16355210
Endocr Rev. 2018 Apr 1;39(2):221-239
pubmed: 29385433
J Nutr Metab. 2015;2015:758080
pubmed: 26146567
Lancet. 2002 May 25;359(9320):1841-50
pubmed: 12044392
J Bone Miner Res. 2010 Jul;25(7):1468-86
pubmed: 20533309
J Bone Miner Res. 2011 Nov;26(11):2597-609
pubmed: 21826735
Nat Commun. 2019 Apr 3;10(1):1523
pubmed: 30944313
J Bone Miner Res. 2014 Feb;29(2):370-9
pubmed: 24038209
J Forensic Sci. 2019 Jan;64(1):52-57
pubmed: 29975982
Immunol Rev. 2005 Dec;208:106-25
pubmed: 16313344
Curr Osteoporos Rep. 2011 Dec;9(4):177-83
pubmed: 21901426
Physiol Rev. 2017 Jan;97(1):135-187
pubmed: 27807202