Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 02 2022
Historique:
received: 01 04 2021
accepted: 25 01 2022
entrez: 24 2 2022
pubmed: 25 2 2022
medline: 13 4 2022
Statut: epublish

Résumé

Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme. Inhibition of DNA-PK by scaRNA2 stimulates DNA end resection by the MRN/CtIP complex, activation of ATM at DNA lesions and subsequent repair by HR. ScaRNA2 is regulated in turn by WRAP53β, which binds this RNA, sequestering it away from DNA-PKcs and allowing NHEJ to proceed. These findings reveal that RNA-dependent control of DNA-PK catalytic activity is involved in regulating whether the cell utilizes NHEJ or HR.

Identifiants

pubmed: 35197472
doi: 10.1038/s41467-022-28646-5
pii: 10.1038/s41467-022-28646-5
pmc: PMC8866460
doi:

Substances chimiques

DNA-Binding Proteins 0
RNA 63231-63-0
DNA 9007-49-2
Protein Kinases EC 2.7.-
DNA-Activated Protein Kinase EC 2.7.11.1
Ku Autoantigen EC 4.2.99.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1015

Informations de copyright

© 2022. The Author(s).

Références

Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).
pubmed: 31263220 pmcid: 7315405 doi: 10.1038/s41580-019-0152-0
Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).
pubmed: 14532133 pmcid: 213795 doi: 10.1093/emboj/cdg541
Paull, T. T. Mechanisms of ATM Activation. Annu Rev. Biochem. 84, 711–738 (2015).
pubmed: 25580527 doi: 10.1146/annurev-biochem-060614-034335
Shibata, A. et al. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 30, 1079–1092 (2011).
pubmed: 21317870 pmcid: 3061033 doi: 10.1038/emboj.2011.27
Lu, W. T. et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat. Commun. 9, 532 (2018).
pubmed: 29416038 pmcid: 5803274 doi: 10.1038/s41467-018-02893-x
Ohle, C. et al. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell. 167, 1001–1013 e7 (2016).
pubmed: 27881299 doi: 10.1016/j.cell.2016.10.001
Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell. 175, 558–570.e11 (2018).
pubmed: 30245011 doi: 10.1016/j.cell.2018.08.056
Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).
pubmed: 32005969 pmcid: 7116639 doi: 10.1038/s41580-019-0206-3
Burger, K., Schlackow, M. & Gullerova, M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic. Acids. Res. 47, 3467–3484 (2019).
pubmed: 30668775 pmcid: 6468493 doi: 10.1093/nar/gkz024
Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature. 488, 231–235 (2012).
pubmed: 22722852 pmcid: 3442236 doi: 10.1038/nature11179
Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell. Biol. 19, 1400–1411 (2017).
pubmed: 29180822 pmcid: 5714282 doi: 10.1038/ncb3643
Wei, W. et al. A role for small RNAs in DNA double-strand break repair. Cell. 149, 101–112 (2012).
pubmed: 22445173 doi: 10.1016/j.cell.2012.03.002
Bader, A. S., Hawley, B. R., Wilczynska, A. & Bushell, M. The roles of RNA in DNA double-strand break repair. Br. J. Cancer. 122, 613–623 (2020).
pubmed: 31894141 pmcid: 7054366 doi: 10.1038/s41416-019-0624-1
Hu, Z. et al. BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J. 39, e104133 (2020).
Zhang, Y. et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat. Struct. Mol. Biol. 23, 522–530 (2016).
pubmed: 27111890 pmcid: 4927085 doi: 10.1038/nsmb.3211
Sharma, V. et al. A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep. 16, 1520–1534 (2015).
pubmed: 26412854 pmcid: 4641504 doi: 10.15252/embr.201540437
Shao, Z. et al. DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature 579, 291–296 (2020).
pubmed: 32103174 doi: 10.1038/s41586-020-2041-2
Kim, D. S. et al. Activation of PARP-1 by snoRNAs controls ribosome biogenesis and cell growth via the RNA Helicase DDX21. Mol. Cell. 75, 1270–1285.e14 (2019).
pubmed: 31351877 pmcid: 6754283 doi: 10.1016/j.molcel.2019.06.020
Darzacq, X. et al. Cajal body-specific small nuclear RNAs: A novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746–2756 (2002).
pubmed: 12032087 pmcid: 126017 doi: 10.1093/emboj/21.11.2746
Tycowski, K. T., You, Z. H., Graham, P. J. & Steitz, J. A. Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol. Cell. 2, 629–638 (1998).
pubmed: 9844635 doi: 10.1016/S1097-2765(00)80161-6
Jády, B. E. et al. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. Embo J. 22, 1878–1888 (2003).
pubmed: 12682020 pmcid: 154478 doi: 10.1093/emboj/cdg187
Kiss, A. M. et al. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic. Acids. Res. 30, 4643–4649 (2002).
pubmed: 12409454 pmcid: 135803 doi: 10.1093/nar/gkf592
Tycowski, K. T., Shu, M. D., Kukoyi, A. & Steitz, J. A. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol. Cell. 34, 47–57 (2009).
pubmed: 19285445 pmcid: 2700737 doi: 10.1016/j.molcel.2009.02.020
Marnef, A., Richard, P., Pinzon, N. & Kiss, T. Targeting vertebrate intron-encoded box C/D 2’-O-methylation guide RNAs into the Cajal body. Nucleic Acids Res. 42, 6616–6629 (2014).
pubmed: 24753405 pmcid: 4041459 doi: 10.1093/nar/gku287
Richard, P. et al. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J. 22, 4283–4293 (2003).
pubmed: 12912925 pmcid: 175784 doi: 10.1093/emboj/cdg394
Venteicher, A. S. et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644–648 (2009).
pubmed: 19179534 pmcid: 2728071 doi: 10.1126/science.1165357
Izumikawa, K. et al. TDP-43 regulates site-specific 2’-O-methylation of U1 and U2 snRNAs via controlling the Cajal body localization of a subset of C/D scaRNAs. Nucleic Acids Res. 47, 2487–2505 (2019).
pubmed: 30759234 pmcid: 6412121 doi: 10.1093/nar/gkz086
Enwerem, I. I., Wu, G., Yu, Y. T. & Hebert, M. D. Cajal body proteins differentially affect the processing of box C/D scaRNPs. PLoS One. 10, e0122348 (2015).
pubmed: 25875178 pmcid: 4395269 doi: 10.1371/journal.pone.0122348
Enwerem, I. I. et al. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis. Biol. Open. 3, 240–249 (2014).
pubmed: 24659245 pmcid: 3988793 doi: 10.1242/bio.20147443
Bergstrand, S. et al. Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis. 11, 238 (2020).
pubmed: 32303682 pmcid: 7165179 doi: 10.1038/s41419-020-2421-4
Bergstrand, S., O’Brien, E. M. & Farnebo, M. The Cajal body protein WRAP53beta prepares the scene for repair of DNA double-strand breaks by regulating local ubiquitination. Front Mol. Biosci. 6, 51 (2019).
pubmed: 31334247 pmcid: 6624377 doi: 10.3389/fmolb.2019.00051
Zhong, F. et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 25, 11–16 (2011).
pubmed: 21205863 pmcid: 3012932 doi: 10.1101/gad.2006411
Hedstrom, E. et al. Downregulation of the cancer susceptibility protein WRAP53beta in epithelial ovarian cancer leads to defective DNA repair and poor clinical outcome. Cell Death Dis. 6, e1892 (2015).
pubmed: 26426684 pmcid: 4632285 doi: 10.1038/cddis.2015.250
Di Giorgio, M. L. et al. WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiol. Dis. 105, 42–50 (2017).
pubmed: 28502804 doi: 10.1016/j.nbd.2017.05.005
Mahmoudi, S. et al. WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol. 8, e1000521 (2010).
pubmed: 21072240 pmcid: 2970535 doi: 10.1371/journal.pbio.1000521
Mahmoudi, S., Henriksson, S., Farnebo, L., Roberg, K. & Farnebo, M. WRAP53 promotes cancer cell survival and is a potential target for cancer therapy. Cell Death Dis. 2, e114 (2011).
pubmed: 21368886 pmcid: 3077286 doi: 10.1038/cddis.2010.90
Henriksson, S. et al. The scaffold protein WRAP53beta orchestrates the ubiquitin response critical for DNA double-strand break repair. Genes Dev. 28, 2726–2738 (2014).
pubmed: 25512560 pmcid: 4265676 doi: 10.1101/gad.246546.114
Rassoolzadeh, H. et al. Overexpression of the scaffold WD40 protein WRAP53beta enhances the repair of and cell survival from DNA double-strand breaks. Cell Death Dis. 7, e2267 (2016).
pubmed: 27310875 pmcid: 5143398 doi: 10.1038/cddis.2016.172
Coucoravas, C., Dhanjal, S., Henriksson, S., Bohm, S. & Farnebo, M. Phosphorylation of the Cajal body protein WRAP53beta by ATM promotes its involvement in the DNA damage response. RNA. Biol. 14, 1–10 (2016).
Mata-Garrido, J., Casafont, I., Tapia, O., Berciano, M. T. & Lafarga, M. Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization. Acta. Neuropathol. Commun. 4, 41 (2016).
pubmed: 27102221 pmcid: 4840862 doi: 10.1186/s40478-016-0312-9
Sollner-Webb, B. Novel intron-encoded small nucleolar RNAs. Cell. 75, 403–405 (1993).
pubmed: 8221882 doi: 10.1016/0092-8674(93)90374-Y
Kiss, T., Fayet, E., Jady, B. E., Richard, P. & Weber, M. Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Cold Spring Harb. Symp. Quant. Biol. 71, 407–417 (2006).
pubmed: 17381323 doi: 10.1101/sqb.2006.71.025
Maxwell, E. S. & Fournier, M. J. The small nucleolar RNAs. Annu Rev. Biochem. 64, 897–934 (1995).
pubmed: 7574504 doi: 10.1146/annurev.bi.64.070195.004341
Logan, M. K., Burke, M. F. & Hebert, M. D. Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization. Biol. Open. 7, 1–12 (2018).
Zhang, P. F. et al. The lncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342-3p target sequence. J. Cell Physiol. 234, 10157–10165 (2019).
pubmed: 30443961 doi: 10.1002/jcp.27684
Gérard, M. A. et al. The scaRNA2 is produced by an independent transcription unit and its processing is directed by the encoding region. Nucleic Acids Res. 38, 370–381 (2010).
pubmed: 19906720 doi: 10.1093/nar/gkp988
Tycowski, K. T., Aab, A. & Steitz, J. A. Guide RNAs with 5’ caps and novel box C/D snoRNA-like domains for modification of snRNAs in metazoa. Curr. Biol. 14, 1985–1995 (2004).
pubmed: 15556860 doi: 10.1016/j.cub.2004.11.003
Poole, A. R., Vicino, I., Adachi, H., Yu, Y. T. & Hebert, M. D. Regulatory RNPs: a novel class of ribonucleoproteins that potentially contribute to ribosome heterogeneity. Biol. Open 6, 1342–1354 (2017).
pubmed: 28808137 pmcid: 5612246
Rassoolzadeh, H., Coucoravas, C. & Farnebo, M. The proximity ligation assay reveals that at DNA double-strand breaks WRAP53beta associates with gammaH2AX and controls interactions between RNF8 and MDC1. Nucleus 6, 417–424 (2015).
pubmed: 26734725 doi: 10.1080/19491034.2015.1106675
Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).
pubmed: 10541549 pmcid: 317094 doi: 10.1101/gad.13.20.2633
Zhou, Y. et al. Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Mol. Cell. 65, 91–104 (2017).
pubmed: 27939942 doi: 10.1016/j.molcel.2016.11.004
Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).
pubmed: 11751629 pmcid: 312854 doi: 10.1101/gad.946401
Shibata, A., Jeggo, P. & Löbrich, M. The pendulum of the Ku-Ku clock. DNA Repair (Amst.) 71, 164–171 (2018).
doi: 10.1016/j.dnarep.2018.08.020
Zhou, Y. & Paull, T. T. DNA-dependent protein kinase regulates DNA end resection in concert with Mre11-Rad50-Nbs1 (MRN) and ataxia telangiectasia-mutated (ATM). J. Biol. Chem. 288, 37112–37125 (2013).
pubmed: 24220101 pmcid: 3873567 doi: 10.1074/jbc.M113.514398
Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006).
pubmed: 16618811 pmcid: 2063811 doi: 10.1083/jcb.200510130
Britton, S. et al. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res. 48, 9710–9723 (2020).
pubmed: 32890395 pmcid: 7515714 doi: 10.1093/nar/gkaa723
Britton, S., Coates, J. & Jackson, S. P. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 202, 579–595 (2013).
pubmed: 23897892 pmcid: 3734090 doi: 10.1083/jcb.201303073
Chen, B. P. et al. Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J. Biol. Chem. 282, 6582–6587 (2007).
pubmed: 17189255 doi: 10.1074/jbc.M611605200
Davis, A. J., So, S. & Chen, D. J. Dynamics of the PI3K-like protein kinase members ATM and DNA-PKcs at DNA double strand breaks. Cell Cycle 9, 2529–2536 (2010).
pubmed: 20543558 pmcid: 3040849 doi: 10.4161/cc.9.13.12148
Jiang, W. et al. Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining. Mol. Cell 58, 172–185 (2015).
pubmed: 25818648 pmcid: 4415111 doi: 10.1016/j.molcel.2015.02.024
Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).
pubmed: 8422676 doi: 10.1016/0092-8674(93)90057-W
Suwa, A. et al. DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc. Natl. Acad. Sci. USA 91, 6904–6908 (1994).
pubmed: 8041718 pmcid: 44306 doi: 10.1073/pnas.91.15.6904
Hammarsten, O., DeFazio, L. G. & Chu, G. Activation of DNA-dependent protein kinase by single-stranded DNA ends. J. Biol. Chem. 275, 1541–1550 (2000).
pubmed: 10636842 doi: 10.1074/jbc.275.3.1541
Yin, X., Liu, M., Tian, Y., Wang, J. & Xu, Y. Cryo-EM structure of human DNA-PK holoenzyme. Cell Res. 27, 1341–1350 (2017).
pubmed: 28840859 pmcid: 5674154 doi: 10.1038/cr.2017.110
Sibanda, B. L., Chirgadze, D. Y., Ascher, D. B. & Blundell, T. L. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355, 520–524 (2017).
pubmed: 28154079 doi: 10.1126/science.aak9654
Carter, T., Vancurová, I., Sun, I., Lou, W. & DeLeon, S. A DNA-activated protein kinase from HeLa cell nuclei. Mol. Cell Biol. 10, 6460–6471 (1990).
pubmed: 2247066 pmcid: 362923
Li, S. et al. Modification of the ionizing radiation response in living cells by an scFv against the DNA-dependent protein kinase. Nucleic Acids Res. 31, 5848–5857 (2003).
pubmed: 14530433 pmcid: 219464 doi: 10.1093/nar/gkg775
Baretic, D. et al. Structural insights into the critical DNA damage sensors DNA-PKcs, ATM and ATR. Prog. Biophys. Mol. Biol. 147, 4–16 (2019).
pubmed: 31255703 doi: 10.1016/j.pbiomolbio.2019.06.003
Sharif, H. et al. Cryo-EM structure of the DNA-PK holoenzyme. Proc. Natl. Acad. Sci. USA 114, 7367–7372 (2017).
pubmed: 28652322 pmcid: 5514765 doi: 10.1073/pnas.1707386114
Mladenov, E., Fan, X., Dueva, R., Soni, A. & Iliakis, G. Radiation-dose-dependent functional synergisms between ATM, ATR and DNA-PKcs in checkpoint control and resection in G(2)-phase. Sci. Rep. 9, 8255 (2019).
pubmed: 31164689 pmcid: 6547644 doi: 10.1038/s41598-019-44771-6
Davis, A. J. et al. BRCA1 modulates the autophosphorylation status of DNA-PKcs in S phase of the cell cycle. Nucleic Acids Res 42, 11487–11501 (2014).
pubmed: 25223785 pmcid: 4191403 doi: 10.1093/nar/gku824
Thapar, R. et al. Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res. 48, 10953–10972 (2020).
pubmed: 33045735 pmcid: 7641761 doi: 10.1093/nar/gkaa784
Velma, V., Carrero, Z. I., Cosman, A. M. & Hebert, M. D. Coilin interacts with Ku proteins and inhibits in vitro non-homologous DNA end joining. FEBS Lett. 584, 4735–4739 (2010).
pubmed: 21070772 pmcid: 3000556 doi: 10.1016/j.febslet.2010.11.004
Mitra, J. et al. Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc. Natl. Acad. Sci. USA 116, 4696–4705 (2019).
pubmed: 30770445 pmcid: 6410842 doi: 10.1073/pnas.1818415116
Konopka, A. et al. Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol. Neurodegener. 15, 51 (2020).
pubmed: 32907630 pmcid: 7488163 doi: 10.1186/s13024-020-00386-4
Chen, L. et al. An activity switch in human telomerase based on RNA conformation and shaped by TCAB1. Cell 174, 218–230.e13 (2018).
pubmed: 29804836 pmcid: 6063371 doi: 10.1016/j.cell.2018.04.039
Woodbine, L. et al. PRKDC mutations in a SCID patient with profound neurological abnormalities. J. Clin. Invest. 123, 2969–2980 (2013).
pubmed: 23722905 pmcid: 3999051 doi: 10.1172/JCI67349
Zhong, Z. H. et al. Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J. Biol. Chem. 282, 29314–29322 (2007).
pubmed: 17693401 doi: 10.1074/jbc.M701413200
Shao, Y. et al. A unique homozygous WRAP53 Arg298Trp mutation underlies dyskeratosis congenita in a Chinese Han family. BMC Med Genet 19, 40 (2018).
pubmed: 29514627 pmcid: 5842585 doi: 10.1186/s12881-018-0549-1
Savage, S. A. Beginning at the ends: Telomeres and human disease. F1000Res. 7, 1–14 (2018).
doi: 10.12688/f1000research.14068.1
Jones, T. R. et al. CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinforma. 9, 482 (2008).
doi: 10.1186/1471-2105-9-482
Tang, J. et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20, 317–325 (2013).
pubmed: 23377543 pmcid: 3594358 doi: 10.1038/nsmb.2499
Gunn, A. & Stark, J. M. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol. Biol. 920, 379–391 (2012).
pubmed: 22941618 doi: 10.1007/978-1-61779-998-3_27
Pederiva, C., Bohm, S., Julner, A. & Farnebo, M. Splicing controls the ubiquitin response during DNA double-strand break repair. Cell Death Diff. 23, 1636–1657 (2016).
doi: 10.1038/cdd.2016.58
Younis, I. et al. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol. Cell Biol. 30, 1718–1728 (2010).
pubmed: 20123975 pmcid: 2838070 doi: 10.1128/MCB.01301-09

Auteurs

Sofie Bergstrand (S)

Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden.

Eleanor M O'Brien (EM)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Christos Coucoravas (C)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Dominika Hrossova (D)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Dimitra Peirasmaki (D)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Sandro Schmidli (S)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Soniya Dhanjal (S)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Chiara Pederiva (C)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Lee Siggens (L)

Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden.

Oliver Mortusewicz (O)

Department of Oncology and Pathology, SciLife, Karolinska Institutet, Stockholm, Sweden.

Julienne J O'Rourke (JJ)

Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.

Marianne Farnebo (M)

Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden. marianne.farnebo@ki.se.
Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden. marianne.farnebo@ki.se.

Articles similaires

Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Humans DNA Methylation Female Male Alcohol Oxidoreductases
DNA Methylation Humans DNA Animals Machine Learning
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair

Classifications MeSH