Black carbon footprint of human presence in Antarctica.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 02 2022
Historique:
received: 26 06 2021
accepted: 19 01 2022
entrez: 23 2 2022
pubmed: 24 2 2022
medline: 13 4 2022
Statut: epublish

Résumé

Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer.

Identifiants

pubmed: 35194040
doi: 10.1038/s41467-022-28560-w
pii: 10.1038/s41467-022-28560-w
pmc: PMC8863810
doi:

Substances chimiques

Soot 0
Carbon 7440-44-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

984

Informations de copyright

© 2022. The Author(s).

Références

Warren, S. G. Light-absorbing impurities in snow: a personal and historical account. Front. Earth Sci. 6, 250 (2019).
doi: 10.3389/feart.2018.00250
Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 118, 1–173 (2013).
doi: 10.1002/jgrd.50171
Schulz, H. et al. Spatial and temporal variability of black carbon in snow measured with an SP2 around Ny­Ålesund. Euro. Geosci. Union Gen. Assembly 20, EGU2018-16814-1 (2018).
Dang, C. et al. Measurements of light-absorbing particles in snow across the Arctic, North America, and China: effects on surface albedo. J. Geophys. Res. Atmos. 122, 10, 149–10, 168 (2017).
Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J. & Clarke, A. D. Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmos. Chem. Phys. 10, 10923–10938 (2010).
doi: 10.5194/acp-10-10923-2010
Doherty, S. J. et al. Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10, 11647–11680 (2010).
doi: 10.5194/acp-10-11647-2010
Clarke, A. D. & Noone, K. J. Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmos. Environ. 19, 2045–2053 (1985).
doi: 10.1016/0004-6981(85)90113-1
Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R. & Warren, S. G. Black carbon and other light‐absorbing particles in snow of central North America. J. Geophys. Res. Atmos. 119, 12–807 (2014).
doi: 10.1002/2014JD022350
Doherty, S. J. et al. Causes of variability in light absorption by particles in snow at sites in Idaho and Utah. J. Geophys. Res. Atmos. 121, 4751–4768 (2016).
doi: 10.1002/2015JD024375
Wang, X., Doherty, S. J. & Huang, J. Black carbon and other light‐absorbing impurities in snow across Northern China. J. Geophys. Res. Atmos. 118, 1471–1492 (2013).
doi: 10.1029/2012JD018291
Zhang, Y. et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere 12, 413–431 (2018).
doi: 10.5194/tc-12-413-2018
Khan, A. L. et al. Biofuel burning influences refractory black carbon concentrations in seasonal snow at lower elevations of the Dudh Koshi River Basin of Nepal. Collaborative Research to Address Changes in the Climate, Hydrology and Cryosphere of High Mountain Asia. (Frontiers in Earth Science, 2020).
Rowe, P. M. et al. Black carbon and other light-absorbing impurities in snow in the Chilean Andes. Sci. Rep. 9, 1–16 (2019).
doi: 10.1038/s41598-019-39312-0
Schmitt, C. G. et al. Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru. Cryosphere 9, 331–340 (2015).
doi: 10.5194/tc-9-331-2015
Kinase, T. et al. Concentrations and size distributions of black carbon in the surface snow of Eastern Antarctica in 2011. J. Geophys. Res. Atmos. 125, e2019JD030737 (2020).
doi: 10.1029/2019JD030737
Khan, A. L., Klein, A. G., Katich, J. M. & Xian, P. Local emissions and regional wildfires influence refractory black carbon observations near Palmer Station, Antarctica. Front. Earth Sci. 7, 49 (2019).
doi: 10.3389/feart.2019.00049
Khan, A. L. et al. Near‐surface refractory black carbon observations in the atmosphere and snow in the McMurdo dry valleys, Antarctica, and potential impacts of Foehn winds. J. Geophys. Res. Atmos. 123, 2877–2887 (2018).
doi: 10.1002/2017JD027696
Warren, S. G. & Clarke, A. D. Soot in the atmosphere and snow surface of Antarctica. J. Geophys. Res. Atmos. 95, 1811–1816 (1990).
doi: 10.1029/JD095iD02p01811
McConnell, J. R. et al. Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand. Nature 598, 82–85 (2021).
pubmed: 34616056 doi: 10.1038/s41586-021-03858-9
Arienzo, M. M. et al. Holocene black carbon in Antarctica paralleled Southern Hemisphere climate. J. Geophys. Res. Atmos. 122, 6713–6728 (2017).
doi: 10.1002/2017JD026599
Bisiaux, M. M. et al. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmos. Chem. Phys. 12, 4107–4115 (2012).
doi: 10.5194/acp-12-4107-2012
Pino-Cortés, E. et al. The black carbon dispersion in the Southern Hemisphere and its transport and fate to Antarctica, an Anthropocene evidence for climate change policies. Sci. Total Environ. 778, 146242 (2020).
doi: 10.1016/j.scitotenv.2021.146242
Neff, P. D. & Bertler, N. A. N. Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica. J. Geophys. Res. Atmos. 120, 9309–9322 (2015).
doi: 10.1002/2015JD023304
Hara, K. et al. Seasonal features and origins of carbonaceous aerosols at Syowa Station, coastal Antarctica. Atmos. Chem. Phys. 19, 7817–7837 (2019).
doi: 10.5194/acp-19-7817-2019
González, R. et al. Characterization of stratospheric smoke particles over the Antarctica by remote sensing instruments. Remote Sens. 12, 3769 (2020).
doi: 10.3390/rs12223769
Jumelet, J. et al. Detection of aerosols in Antarctica from long-range transport of the 2009 Australian wildfires. J. Geophys. Res. Atmos. 125, e2020JD032542 (2020).
doi: 10.1029/2020JD032542
Nguyen, H. D., Riley, M., Leys, J. & Salter, D. Dust storm event of February 2019 in Central and East Coast of Australia and evidence of long-range transport to New Zealand and Antarctica. Atmosphere 10, 653 (2019).
doi: 10.3390/atmos10110653
Gassó, S. & Torres, O. Temporal characterization of dust activity in the Central Patagonia desert (years 1964–2017). J. Geophys. Res. Atmos. 124, 3417–3434 (2019).
doi: 10.1029/2018JD030209
Asmi, E. et al. Primary sources control the variability of aerosol optical properties in the Antarctic Peninsula. Tellus Ser. B Chem. Phys. Meteorol. 70, 1–16 (2018).
doi: 10.1080/16000889.2017.1414571
Uetake, J. et al. Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer. Proc. Natl Acad. Sci. USA 117, 13275–13282 (2020).
pubmed: 32482865 pmcid: 7306778 doi: 10.1073/pnas.2000134117
Kavan, J., Dagsson‐Waldhauserova, P., Renard, J. B., Láska, K. & Ambrožová, K. Aerosol concentrations in relationship to local atmospheric conditions on James Ross Island, Antarctica. Front. Earth Sci. 6, 1–17 (2018).
doi: 10.3389/feart.2018.00207
Kavan, J., Nývlt, D., Láska, K., Engel, Z. & Kňažková, M. High‐latitude dust deposition in snow on the glaciers of James Ross Island, Antarctica. Earth Surf. Proc. Land. 45, 1569–1578 (2020).
doi: 10.1002/esp.4831
COMNAP 2017, The Council of Managers of National Antarctic Programs, Antarctic Station Catalogue, ISBN 978-0-473-40409-3. https://static1.squarespace.com/static/61073506e9b0073c7eaaf464/t/611497cc1ece1b43f0eeca8a/1628739608968/COMNAP_Antarctic_Station_Catalogue.pdf . (2017).
ATS. Antarctic Treaty Secretariat, Vessel-Based Operations, Electronic Information Exchange System. https://www.ats.aq/devAS/InformationExchange/ShipReport . (2020).
IAATO. International Association of Antarctica Tour Operators, Systematic Conservation Plan for the Antarctic Peninsula Project Updates. https://iaato.org/wp-content/uploads/2020/03/IP024-Systematic-Conservation-Plan-for-the-Antarctic-Peninsula-Project-Updates.pdf . (2019).
IAATO. International Association of Antarctica Tour Operators. https://iaato.org/wp-content/uploads/2020/07/IAATO-on-Antarctic-visitor-figures-2019-20-FINAL.pdf . (2020).
Khan, A. L. et al. Dissolved black carbon in the global cryosphere: concentrations and chemical signatures. Geophys. Res. Lett. 44, 6226–6234 (2017).
doi: 10.1002/2017GL073485
Gray, A. et al. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11, 1–9 (2020).
doi: 10.1038/s41467-020-16018-w
Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15, 133–148 (2021).
doi: 10.5194/tc-15-133-2021
Hoffmann-Abdi, K. et al. Short-term meteorological and environmental signals recorded in a firn core from a high-accumulation site on plateau Laclavere, Antarctic Peninsula. Geosciences 11, 428 (2021).
doi: 10.3390/geosciences11100428
Dang, C., Brandt, R. E. & Warren, S. G. Parameterizations for narrowband and broadband Albedo of pure snow and snow containing mineral dust and BlackCarbon. J. Geophys. Res. Atmos. 120, 5446–5468 (2015).
doi: 10.1002/2014JD022646
Conway, H., Gades, A. & Raymond, C. F. Albedo of dirty snow during conditions of melt. Water Resour. Res. 32, 1713–1718 (1996).
doi: 10.1029/96WR00712
Doherty, S. J. et al. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res. Atmos. 118, 5553–5569 (2013).
doi: 10.1002/jgrd.50235
Grenfell, T. C. et al. Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters. Appl. Opt. 50, 2037–2048 (2011).
pubmed: 21556105 doi: 10.1364/AO.50.002037
Aoki, T. et al. Spectral albedo of desert surfaces measured in western and central China. J. Meteor. Soc. Jpn. 83, 279–290 (2005).
doi: 10.2151/jmsj.83A.279
Hersbach, H. The ERA5 Atmospheric Reanalysis, NG33D-01. (AGUFM, 2016).
Cohen, J. Snow cover and climate. Weather 49, 150–156 (1994).
doi: 10.1002/j.1477-8696.1994.tb05997.x
Cordero, R. R. et al. Monte Carlo-based uncertainty Analysis of UV array spectroradiometers. Metrologia 49, 745–755 (2012).
doi: 10.1088/0026-1394/49/6/745
Cordero, R. R. et al. Monte Carlo-based uncertainties of surface UV estimates from models and from spectroradiometers. Metrologia 50, L1–L5 (2013).
doi: 10.1088/0026-1394/50/5/L1
Draxler, R. R. & Rolph, G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website http://ready.arl.noaa.gov/HYSPLIT.php . (NOAA Air Resources Laboratory, Silver Spring, 2015).
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. 96, 2059–2077 (2015).
NOAA Air Resources Laboratory (ARL). Global Data Assimilation System (GDAS1) Archive Information. Tech. Rep. http://ready.arl.noaa.gov/gdas1.php (2004).
Su, L., Yuan, Z., Fung, J. C. & Lau, A. K. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 506, 527–537 (2015).
pubmed: 25433385 doi: 10.1016/j.scitotenv.2014.11.072
GMAO Global Modeling and Assimilation Office (GMAO) (2015). MERRA-2 tavg1_2d_rad_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Radiation Diagnostics V5.12.4, (Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 2021).
Ter Braak, C. J. in Bootstrapping and Related Techniques, 79–85. (Springer, 1992).
Abdi, H. & Williams, L. J. Tukey’s honestly significant difference (HSD) test. Encycl. Res. Des. 3, 1–5 (2010).
JMP, Version 15.2.0. SAS Institute Inc., Cary, NC, 1989–2021.
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55

Auteurs

Raúl R Cordero (RR)

Universidad de Santiago de Chile. Av. Bernardo O'Higgins, 3363, Santiago, Chile.

Edgardo Sepúlveda (E)

Universidad de Santiago de Chile. Av. Bernardo O'Higgins, 3363, Santiago, Chile.

Sarah Feron (S)

Universidad de Santiago de Chile. Av. Bernardo O'Higgins, 3363, Santiago, Chile. s.c.feron@rug.nl.
University of Groningen, 8911 CE, Leeuwarden, The Netherlands. s.c.feron@rug.nl.

Alessandro Damiani (A)

Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoicho, Inage Ward, Chiba, 263-8522, Japan. damiani@chiba-u.jp.

Francisco Fernandoy (F)

Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.

Steven Neshyba (S)

University of Puget Sound, Department of Chemistry, Tacoma, WA, USA.

Penny M Rowe (PM)

NorthWest Research Associates, Redmond, WA, USA.

Valentina Asencio (V)

Select Carbon Pty Ltd, 562 Wellington Street, Perth, WA, 6000, Australia.

Jorge Carrasco (J)

University of Magallanes, Av. Manuel Bulnes 1855, Punta Arenas, Chile.

Juan A Alfonso (JA)

Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado, 20632, Caracas, Venezuela.

Pedro Llanillo (P)

Alfred Wegener Institute (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany.

Paul Wachter (P)

German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Wessling, Germany.

Gunther Seckmeyer (G)

Leibniz Universität Hannover, Herrenhauser Strasse 2, Hannover, Germany.

Marina Stepanova (M)

Universidad de Santiago de Chile. Av. Bernardo O'Higgins, 3363, Santiago, Chile. marina.stepanova@usach.cl.

Juan M Carrera (JM)

Universidad de Santiago de Chile. Av. Bernardo O'Higgins, 3363, Santiago, Chile.

Jose Jorquera (J)

Universidad de Santiago de Chile. Av. Bernardo O'Higgins, 3363, Santiago, Chile.

Chenghao Wang (C)

Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.

Avni Malhotra (A)

University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.

Jacob Dana (J)

Western Washington University, 516 High St, Bellingham, WA, 98225, USA.

Alia L Khan (AL)

Western Washington University, 516 High St, Bellingham, WA, 98225, USA.
National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO, USA.

Gino Casassa (G)

University of Magallanes, Av. Manuel Bulnes 1855, Punta Arenas, Chile.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH