Lead exposure does not affect baseline and induced innate immunity in quails.

acute-phase protein birds innate immune system metal pollution white blood cells

Journal

Journal of experimental zoology. Part A, Ecological and integrative physiology
ISSN: 2471-5646
Titre abrégé: J Exp Zool A Ecol Integr Physiol
Pays: United States
ID NLM: 101710204

Informations de publication

Date de publication:
06 2022
Historique:
revised: 02 02 2022
received: 29 10 2021
accepted: 07 02 2022
pubmed: 22 2 2022
medline: 21 5 2022
entrez: 21 2 2022
Statut: ppublish

Résumé

Lead (Pb) is one of the most common metals found in ecosystems in elevated concentrations derived mainly from anthropogenic activities. Pb toxicity is of special concern in birds due to its capacity for bioaccumulation in the liver, bones, and kidneys causing physiological disruptions. Such disruptions can be lethal in a few days after Pb acute intoxication and they are associated with several million deaths of birds. Moreover, Pb may work as an immunosuppressant as it affects the cell-mediated and humoral immune responses, including components of the acute-phase response (APR). We (1) examined the effects of Pb contamination on the innate immune system, body mass, and food intake of Japanese quails (Coturnix coturnix japonica), and (2) evaluated the effects of Pb on its APR after exposing the animals to Pb acetate in drinkable water during 7 days. We found that Pb contamination increased the number of circulating white blood cells (WBCs), but no effect was found on body mass, food intake, the heterophil/lymphocyte (H/L) ratio, and haptoglobin (Hp) concentration. When Pb-exposed birds were injected with lipopolysaccharide from Escherichia coli to activate the APR, they had a negative body mass ratio, reduced food intake, and increased the number of WBCs, the H/L ratio, and the Hp concentration. We conclude that Pb exposure at this dose did not affect baseline values of the constitutive response and that it did not affect the APR of quails, but commend for further studies testing the effect of different Pb doses.

Identifiants

pubmed: 35189040
doi: 10.1002/jez.2586
doi:

Substances chimiques

Lead 2P299V784P

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

527-536

Subventions

Organisme : Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
ID : #814-2018
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : #88888.434131/2019-01
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : #2014/16320-7
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : #2017/17607-6

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Armour, E. M., Bruner, T. L., Hines, J. K., & Butler, M. W. (2020). Low-dose immune challenges result in detectable levels of oxidative damage. Journal of Experimental Biology, 223(6):jeb220095. https://doi.org/10.1242/jeb.220095
Bailly, J., Garnier, S., Khimoun, A., Arnoux, E., Eraud, C., Goret, J. Y., & Faivre, B. (2016). Reduced inflammation in expanding populations of a neotropical bird species. Ecology and Evolution, 6(20), 7511-7521. https://doi.org/10.1002/ece3.2486
Baumann, H., & Gauldie, J. (1994). The acute phase response. Immunology Today, 15(2), 74-80. https://doi.org/10.1016/0167-5699(94)90137-6
Beyer, W. N., Dalgarn, J., Dudding, S., French, J. B., Mateo, R., Miesner, J., Sileo, L., & Spann, J. (2004). Zinc and lead poisoning in wild birds in the Tri-State Mining District (Oklahoma, Kansas, and Missouri). Archives of Environmental Contamination and Toxicology, 48, 108-117. https://doi.org/10.1007/s00244-004-0010-7
Beyer, W. N., Franson, J. C., Locke, L. N., Stroud, R. K., & Sileo, L. (1998). Retrospective study of the diagnostic criteria in a lead-poisoning survey of waterfowl. Archives of Environmental Contamination and Toxicology, 35, 506-512. https://doi.org/10.1007/s002449900409
Bunn, T. L., Marsh, J. A., & Dietert, R. R. (2000). Gender differences in developmental immunotoxicity to lead in the chicken: Analysis following a single early low-level exposure in ovo. Journal of Toxicology and Environmental Health, Part A, 61(8), 677-693. https://doi.org/10.1080/00984100050195152
Burger, J. (1995). Invited review: A risk assessment for lead in birds. Journal of Toxicology and Environmental Health, 45(4), 369-396. https://doi.org/10.1080/15287399509532003
Burger, J., & Gochfeld, M. (1995). Behavioral impairments of lead-injected young herring gulls in nature. Toxicological Sciences, 23(4), 553-561. https://doi.org/10.1093/toxsci/23.4.553
Calabrese, E. J., & Baldwin, L. A. (2003). Toxicology rethinks its central belief. Nature, 421(6924), 691-692. https://doi.org/10.1038/421691a
Carneiro, M. A., Oliveira, A. P., Brandão, R., Francisco, O. N., Velarde, R., Lavín, S., & Colaço, B. (2016). Lead poisoning due to lead-pellet ingestion in griffon vultures (Gyps fulvus) from the Iberian Peninsula. Journal of Avian Medicine and Surgery, 30(3), 274-279. https://doi.org/10.1647/2014-051
Cid, F. D., Fernández, N. C., Pérez-Chaca, M. V., Pardo, R., Caviedes-Vidal, E., & Chediack, J. G. (2018). House sparrow biomarkers as lead pollution bioindicators. Evaluation of dose and exposition length on hematological and oxidative stress parameters. Ecotoxicology and Environmental Safety, 154, 154-161.
Cid, F. D., Gatica-Sosa, C., Antón, R. I., & Caviedes-Vidal, E. (2009). Contamination of heavy metals in birds from Embalse La Florida (San Luis, Argentina). Journal of Environmental Monitoring, 11(11), 2044-2051.
Coon, C. A. C., Warne, R. W., & Martin, L. B. (2011). Acute-phase responses vary with pathogen identity in house sparrows (Passer domesticus). American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 300, R1418-R1425. https://doi.org/10.1152/ajpregu.00187.2010
Corsetti, G., Romano, C., Stacchiotti, A., Pasini, E., & Dioguardi, F. S. (2017). Endoplasmic reticulum stress and apoptosis triggered by sub-chronic lead exposure in mice spleen: A histopathological study. Biological Trace Element Research, 178(1), 86-97. https://doi.org/10.1007/s12011-016-0912-z
Cray, C., Zaias, J., & Altman, N. H. (2009). Acute phase response in animals: A review. Laboratory Animal Science, 59(6), 517-526.
Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Functional Ecology, 22(5), 760-772. https://doi.org/10.1111/j.1365-2435.2008.01467.x
De Francisco, N., Ruiz Troya, J. D., & Agüera, E. I. (2003). Lead and lead toxicity in domestic and free living birds. Avian Pathology, 32(1), 3-13. https://doi.org/10.1080/0307945021000070660
Dedourge-Geffard, O., Palais, F., Biagianti-Risbourg, S., Geffard, O., & Geffard, A. (2009). Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: An in situ experiment. Chemosphere, 77(11), 1569-1576. https://doi.org/10.1016/j.chemosphere.2009.09.042
Dietert, R. R., & Piepenbrink, M. S. (2006). Lead and immune function. Critical Reviews in Toxicology, 36(4), 359-385. https://doi.org/10.1080/10408440500534297
Douglas-Stroebel, E., Hoffman, D. J., Brewer, G. L., Sileo, L. (2004), Effects of lead-contaminated sediment and nutrition on mallard duckling brain growth and biochemistry. Environmental Pollution, 131(2);215-222. https://doi.org/10.1016/j.envpol.2004.02.002
Einoder, L. D., MacLeod, C. K., & Coughanowr, C. (2018). Metal and isotope analysis of bird feathers in a contaminated estuary reveals bioaccumulation, biomagnification, and potential toxic effects. Archives of Environmental Contamination and Toxicology, 75(1), 96-110. https://doi.org/10.1007/s00244-018-0532-z
Fair, J. M., & Myers, O. B. (2002). The ecological and physiological costs of lead shot and immunological challenge to developing western bluebirds. Ecotoxicology, 11(3), 199-208. https://doi.org/10.1023/A:1015474832239
Fair, J. M., & Ricklefs, R. E. (2002). Physiological, growth, and immune responses of Japanese quail chicks to the multiple stressors of immunological challenge and lead shot. Archives of Environmental Contamination and Toxicology, 42(1), 77-87. https://doi.org/10.1007/s002440010294
Fairbrother, A., Smits, J., & Grasman, K. A. (2004). Avian immunotoxicology. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 7, 105-137. https://doi.org/10.1080/10937400490258873
Farkhondeh, T., Boskabady, M. H., Kohi, M. K., Sadeghi-Hashjin, G., & Moin, M. (2014). Lead exposure affects inflammatory mediators, total and differential white blood cells in sensitized guinea pigs during and after sensitization. Drug and Chemical Toxicology, 37(3), 329-335. https://doi.org/10.3109/01480545.2013.866133
Ferreyra, H., Beldomenico, P. M., Marchese, K., Romano, M., Caselli, A., Correa, A. I., & Uhart, M. (2015). Lead exposure affects health indices in free-ranging ducks in Argentina. Ecotoxicology, 24(4), 735-745. https://doi.org/10.1007/s10646-015-1419-7
Fisher, I. J., Pain, D. J., & Thomas, V. G. (2006). A review of lead poisoning from ammunition sources in terrestrial birds. Biological Conservation, 131(3), 421-432. https://doi.org/10.1016/j.biocon.2006.02.018
Grasman, K. A., & Scanlon, P. F. (1995). Effects of acute lead ingestion and diet on antibody and T-cell-mediated immunity in Japanese quail. Archives of Environmental Contamination and Toxicology, 28(2), 161-167. https://doi.org/10.1007/BF00217611
Gross, W. B., & Siegel, H. S. (1983). Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Diseases, 27(4), 972-979.
Guitart, R., Torra, M., Cerradelo, S., Puig-Casado, P., Mateo, R., & To-Figueras, J. (1994). Pb, Cd, As, and Se concentrations in livers of dead wild birds from the Ebro delta, Spain. Bulletin of Environmental Contamination and Toxicology, 52, 523-529.
Hart, B. L. (1988). The behavior of sick animals. The Veterinary Clinics of North America. Small Animal Practice, 21(2), 225-237. https://doi.org/10.1016/S0195-5616(91)50028-0
Hasselquist, D., & Nilsson, J. (2012). Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds? Animal Behaviour, 83(6), 1303-1312. https://doi.org/10.1016/j.anbehav.2012.03.025
Huss, D. (2008). Japanese quail (Coturnix japonica) as a laboratory animal model. Laboratory Animal, 37(11), 513-519.
Hussain, S., Ali, S., Mumtaz, S., Shakir, H. A., Ahmad, F., Tahir, H. M., & Zahid, M. T. (2020). Dose and duration-dependent toxicological evaluation of lead acetate in chicks. Environmental Science and Pollution Research, 27(13), 15149-15164. https://doi.org/10.1007/s11356-020-08016-8
Jelena, A., Mirjana, M., Desanka, B., Svetlana, I. M., Aleksandra, U., Goran, P., & Ilijana, G. (2013). Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: Antioxidant role of haptoglobin. Journal of Physiology and Biochemistry, 69(1), 45-58. https://doi.org/10.1007/s13105-012-0186-7
Johnson, R. W. (2002). The concept of sickness behavior: A brief chronological account of four key discoveries. Veterinary Immunology and Immunopathology, 87(3-4), 443-450. https://doi.org/10.1016/S0165-2427(02)00069-7
Kasperczyk, A., Prokopowicz, A., Dobrakowski, M., Pawlas, N., & Kasperczyk, S. (2012). The effect of occupational lead exposure on blood levels of zinc, iron, copper, selenium and related proteins. Biological Trace Element Research, 150(1-3), 49-55. https://doi.org/10.1007/s12011-012-9490-x
Kou, H., Ya, J., Gao, X., & Zhao, H. (2020). The effects of chronic lead exposure on the liver of female Japanese quail (Coturnix japonica): Histopathological damages, oxidative stress and AMP-activated protein kinase based lipid metabolism disorder. Ecotoxicology and Environmental Safety, 190(620), 110055. https://doi.org/10.1016/j.ecoenv.2019.110055
Koutsos, E. A., & Klasing, K. C. (2001). The acute phase response in Japanese quail (Coturnix coturnix japonica). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 128(2), 255-263. https://doi.org/10.1016/S1532-0456(00)00199-X
Krone, O. (2018). Lead poisoning in birds of prey. In J. Sarasola, J. Grande, & J. Negro (Eds.), Birds of Prey. Springer. https://doi.org/10.1007/978-3-319-73745-4_11
Lee, J.-E., & Dietert, R. R. (2003). Developmental immunotoxicity of lead: Impact on thymicfunction. Birth Defects Research, Part A: Clinical and Molecular Teratology, 67, 861-867.
Lumeij, J. T. (1985). Clinicopathologic aspects of lead poisoning in birds: A review. Veterinary Quaterly, 7, 133-138.
Ma, W. C. (1989). Effect of soil pollution with metallic lead pellets on lead bioaccumulation and organ/body weight alterations in small mammals. Archives of Environmental Contamination and Toxicology, 18(4), 617-622. https://doi.org/10.1007/BF01055030
Matson, K. D., Ricklefs, R. E., & Klasing, K. C. (2005). A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Developmental and Comparative Immunology, 29(3), 275-286. https://doi.org/10.1016/j.dci.2004.07.006
McCabe, M. J., & Lawrence, D. A. (1991). Lead, a major environmental pollutant, is immuno-modulatory by its differential effects on CD4+ T cell subsets. Toxicology and Applied Pharmacology 111, 13-23.
McMurry, S. T., Lochmiller, R. L., Chandra, S. A. M., & Qualls, C. W. (1995). Sensitivity of selected immunological, hematological, and reproductive in the cotton rat (Sifmodon hispidus) to subchronic lead exposure. Journal of Wildlife Diseases, 31(2), 193-204.
Mehrota, V., Saxena, V. L., & Saxena, A. K. (2008). Impact of differents doses of lead on internal organs of quail. Journal of Environmental Biology, 29(March), 147-149. http://jeb.co.in/journal_issues/200803_mar08/paper_03.pdf
Michael Davis, J., & Svendsgaard, D. J. (1990). U-shaped dose-response curves: Their occurrence and implications for risk assessment. Journal of Toxicology and Environmental Health, 30(2), 71-83. https://doi.org/10.1080/15287399009531412
Millet, S., Bennett, J., Lee, K. A., Hau, M., & Klasing, K. C. (2007). Quantifying and comparing constitutive immunity across avian species. Developmental and Comparative Immunology, 31(2), 188-201. https://doi.org/10.1016/j.dci.2006.05.013
Nain, S., & Smits, J. E. G. (2011). Subchronic lead exposure, immunotoxicology and increased disease resistance in Japanese quail (Corturnix coturnix japonica). Ecotoxicology and Environmental Safety, 74(4), 787-792. https://doi.org/10.1016/j.ecoenv.2010.10.045
Nazifi, S., Mosleh, N., Alaeddini, A., & Basaki, M. (2011). Acute phase proteins in Japanese quail (Coturnix coturnix japonica) with ulcerative enteritis. Online Journal of Veterinary Research, 15(4), 395-403.
Olkowski, A. A., Wojnarowicz, C., Chirino-Trejo, M., Wurtz, B. M., & Kumor, L. (2005). The role of first line of defence mechanisms in the pathogenesis of cellulitis in broiler chickens: Skin structural, physiological and cellular response factors. Journal of Veterinary Medicine Series A: Physiology Pathology Clinical Medicine, 52(10), 517-524. https://doi.org/10.1111/j.1439-0442.2005.00768.x
Owen, J. C. (2011). Collecting, processing, and storing avian blood: A review. Journal of Field Ornithology, 82(4), 339-354. https://doi.org/10.1111/j.1557-9263.2011.00338.x
Owen-Ashley, N. T., & Wingfield, J. C. (2006). Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). Journal of Experimental Biology, 209(16), 3062-3070. https://doi.org/10.1242/jeb.02371
Owen-Ashley, N. T., & Wingfield, J. C. (2007). Acute phase responses of passerine birds: Characterization and seasonal variation. Journal of Ornithology, 148, 583-591. https://doi.org/10.1007/s10336-007-0197-2
Pain, D. J., Amiard-Triquet, C., Bavoux, C., Burneleau, G., Eon, L., & Nicolau-Guillaumet, P. (1993). Lead poisoning in wildpopulations of marsh harrier (Circus aeruginosus) in the Camargue and Charente-Maritime, France. Ibis, 135, 379-386. https://doi.org/10.1111/j.1474-919X.1993.tb02109.x
Pattee, O. H. (1984). Eggshell thickness and reproduction in American kestrels exposed to chronic dietary lead. Archives of Environmental Contamination and Toxicology, 13, 29-34. https://doi.org/10.1007/BF01055643
Quaye, I. K. (2008). Haptoglobin, inflammation and disease. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(8), 735-742. https://doi.org/10.1016/j.trstmh.2008.04.010
Rainio, M. J., Eeva, T., Lilley, T., Stauffer, J., & Ruuskanen, S. (2015). Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (Parus major). Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 167, 24-34. https://doi.org/10.1016/j.cbpc.2014.08.004
Ritchie, B. W., Harrison, G. J., & Harrison, L. R. (1994). Avian Medicine: Principle and Application. Wingers Publishing.
Rocke, T. E., & Samuel, M. D. (1991). Effects of lead shot ingestion on selected cells of the mallard immune system. Journal of Wildlife Diseases, 27(1), 1-9. https://doi.org/10.7589/0090-3558-27.1.1
Rodríguez, J. J., Oliveira, P. A., Fidalgo, L. E., Ginja, M. M. D., Silvestre, A. M., Ordoñez, C., Serantes, A. E., Gonzalo-Orden, J. M., & Orden, M. A. (2010). Lead toxicity in captive and wild mallards (Anas platyrhynchos) in Spain. Journal of Wildlife Diseases, 46(3), 854-863. https://doi.org/10.7589/0090-3558-46.3.854
Roitt, I. M., Brostoff, A. M., & Male, D. K. (1998). Immunology. Mosby.
Romijn, C. A. F. M., Grau, R., Guth, J. A., Harrison, E. G., Jackson, C. M., Lefebvre, B., & Street, J. R. (1995). The use of Japanese and bobwhite quail as indicator species in avian toxicity test. Chemosphere, 30(6), 1033-1040. https://doi.org/10.1016/0045-6535(95)00014-Y
Scheuhammer, A. M. (1987). The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: A review. Environmental Pollution, 46(4), 263-295. https://doi.org/10.1016/0269-7491(87)90173-4
Scheuhammer, A. M. (1991). Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environmental Pollution, 71(2-4), 329-375. https://doi.org/10.1016/0269-7491(91)90036-V
Scheuhammer, A. M., & Norris, S. L. (1996). The ecotoxicology of lead shot and lead fishing weights. Ecotoxicology, 5(5), 279-295. https://doi.org/10.1007/BF00119051
Singh, B., Dhawan, D., Nehru, B., Garg, M. L., Mangal, P. C., Chand, B., & Trehan, P. N. (1994). Impact of lead pollution on the status of other trace metals in blood and alterations in hepatic functions. Biological Trace Element Research, 40(1), 21-29. https://doi.org/10.1007/BF02916817
Sköld-Chiriac, S., Nord, A., Nilsson, J. Å., & Hasselquist, D. (2014). Physiological and behavioral responses to an acute-phase response in zebra finches: Immediate and short-term effects. Physiological and Biochemical Zoology, 87(2), 288-298. https://doi.org/10.1086/674789
Snoeijs, T., Dauwe, T., Pinxten, R., Darras, V. M., Arckens, L., & Eens, M. (2005). The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygia guttata). Environmental Pollution, 134(1), 123-132. https://doi.org/10.1016/j.envpol.2004.07.009
Snoeijs, T., Dauwe, T., Pinxten, R., Vandesande, F., & Eens, M. (2004). Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major). Archives of Environmental Contamination and Toxicology, 46(3), 399-404. https://doi.org/10.1007/s00244-003-2195-6
Trust, K. A., Miller, M. W., Ringelman, J. K., & Orme, I. M. (1990). Effects of ingested lead on an-tibody production in mallards (Anas platyrhynchos). Journal of Wildlife Diseases, 26, 316-322.
Vallverdú-Coll, N., Mateo, R., Mougeot, F., & Ortiz-Santaliestra, M. E. (2019). Immunotoxic effects of lead on birds. Science of the Total Environment, 689, 505-515. https://doi.org/10.1016/j.scitotenv.2019.06.251
Vermeulen, A., Müller, W., Matson, K. D., Tieleman, B. I., Bervoets, L., & Eens, M. (2015). Sources of variation in innate immunity in great tit nestlings living along a metal pollution gradient: An individual-based approach. Science of the Total Environment, 508, 297-306. https://doi.org/10.1016/j.scitotenv.2014.11.095
Veronika, P., Hana, P., Jiri, P., Hana, B., Jana, S., & Klara, H. (2011). Combined exposure of Japanese quails to cyanotoxins, Newcastle virus and lead: Oxidative stress responses. Ecotoxicology and Environmental Safety, 74(7), 2082-2090. https://doi.org/10.1016/j.ecoenv.2011.07.014

Auteurs

Gabriel Melhado (G)

Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, São Paulo, Brazil.

Jorge Henrique Pedrobom L (JH)

Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil.

Amauri A Menegário (AA)

Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil.

Luis Gerardo Herrera Montalvo (LG)

Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, San Patricio, Jalisco, México.

Ariovaldo P Cruz-Neto (AP)

Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, São Paulo, Brazil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH