Structure-Activity Relationship of Metabolic Sialic Acid Inhibitors and Labeling Reagents.
Journal
ACS chemical biology
ISSN: 1554-8937
Titre abrégé: ACS Chem Biol
Pays: United States
ID NLM: 101282906
Informations de publication
Date de publication:
18 03 2022
18 03 2022
Historique:
pubmed:
19
2
2022
medline:
30
4
2022
entrez:
18
2
2022
Statut:
ppublish
Résumé
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes, and aberrant sialic acid expression is associated with several pathologies, such as cancer. Strategies to interfere with the sialic acid biosynthesis can potentially be used for anticancer therapy. One well-known class of sialylation inhibitors is peracetylated 3-fluorosialic acids. We synthesized 3-fluorosialic acid derivatives modified at the C-4, C-5, C-8, and C-9 position and tested their inhibitory potency in vitro. Modifications at C-5 lead to increased inhibition, compared to the natural acetamide at this position. These structure-activity relationships could also be applied to improve the efficiency of sialic acid metabolic labeling reagents by modification of the C-5 position. Hence, these results improve our understanding of the structure-activity relationships of sialic acid glycomimetics and their metabolic processing.
Identifiants
pubmed: 35179348
doi: 10.1021/acschembio.1c00868
pmc: PMC8938927
doi:
Substances chimiques
Indicators and Reagents
0
Polysaccharides
0
Sialic Acids
0
N-Acetylneuraminic Acid
GZP2782OP0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
590-597Références
J Immunol. 2010 Nov 15;185(10):5869-78
pubmed: 20956342
Nat Rev Drug Discov. 2021 Mar;20(3):217-243
pubmed: 33462432
Glycobiology. 2019 Jun 1;29(6):433-445
pubmed: 30913290
Cell Chem Biol. 2018 Oct 18;25(10):1279-1285.e8
pubmed: 29983272
J Biol Chem. 2004 Sep 24;279(39):40819-26
pubmed: 15226294
Immunol Cell Biol. 2017 Apr;95(4):408-415
pubmed: 27874015
ACS Chem Biol. 2015 Oct 16;10(10):2353-63
pubmed: 26258433
Nat Chem Biol. 2020 Dec;16(12):1376-1384
pubmed: 32807964
ACS Nano. 2015 Jan 27;9(1):733-45
pubmed: 25575241
J Med Chem. 2019 Jan 24;62(2):1014-1021
pubmed: 30543426
Immunology. 2009 Sep;128(1 Suppl):e621-31
pubmed: 19740323
Glycobiology. 2001 Aug;11(8):621-32
pubmed: 11479273
Glycobiology. 2021 Oct 25;:
pubmed: 34939087
Biochim Biophys Acta. 2014 Aug;1846(1):238-46
pubmed: 25026312
Nat Rev Immunol. 2014 Oct;14(10):653-66
pubmed: 25234143
Nat Chem Biol. 2012 Jul;8(7):661-8
pubmed: 22683610
ACS Cent Sci. 2021 Sep 22;7(9):1508-1515
pubmed: 34584952
Adv Carbohydr Chem Biochem. 2018;75:1-213
pubmed: 30509400
J Leukoc Biol. 2004 Feb;75(2):307-13
pubmed: 14634064
Chem Rev. 2002 Feb;102(2):439-69
pubmed: 11841250
Mol Cancer Ther. 2013 Oct;12(10):1935-46
pubmed: 23974695
Bioconjug Chem. 2021 Jun 16;32(6):1047-1051
pubmed: 34043338
Trends Mol Med. 2003 Jun;9(6):263-8
pubmed: 12829015
Cancer Res. 2018 Jul 1;78(13):3574-3588
pubmed: 29703719
Glycobiology. 2002 Mar;12(3):183-90
pubmed: 11971862