Size-Dependent Thermal Stability and Optical Properties of Ultra-Small Nanodiamonds Synthesized under High Pressure.
Fano effect
Fourier-transformed infrared spectra
Raman scattering
chloroadamantane
high-pressure high-temperature synthesis
nanodiamond
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
22 Jan 2022
22 Jan 2022
Historique:
received:
19
12
2021
revised:
15
01
2022
accepted:
17
01
2022
entrez:
15
2
2022
pubmed:
16
2
2022
medline:
16
2
2022
Statut:
epublish
Résumé
Diamond properties down to the quantum-size region are still poorly understood. High-pressure high-temperature (HPHT) synthesis from chloroadamantane molecules allows precise control of nanodiamond size. Thermal stability and optical properties of nanodiamonds with sizes spanning range from <1 to 8 nm are investigated. It is shown that the existing hypothesis about enhanced thermal stability of nanodiamonds smaller than 2 nm is incorrect. The most striking feature in IR absorption of these samples is the appearance of an enhanced transmission band near the diamond Raman mode (1332 cm-1). Following the previously proposed explanation, we attribute this phenomenon to the Fano effect caused by resonance of the diamond Raman mode with continuum of conductive surface states. We assume that these surface states may be formed by reconstruction of broken bonds on the nanodiamond surfaces. This effect is also responsible for the observed asymmetry of Raman scattering peak. The mechanism of nanodiamond formation in HPHT synthesis is proposed, explaining peculiarities of their structure and properties.
Identifiants
pubmed: 35159694
pii: nano12030351
doi: 10.3390/nano12030351
pmc: PMC8838209
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Russian Foundation for Basic Research
ID : 20-52-26017
Organisme : Czech Science Foundation
ID : 21-12567J
Organisme : CzechNanoLab research infrastructure supported by the Ministry of Education, Youth and Sports of the Czech Republic
ID : LM2018110
Références
Phys Chem Chem Phys. 2015 Jul 21;17(27):17739-44
pubmed: 26082271
ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38842-38853
pubmed: 29028298
Phys Rev Lett. 2000 Oct 16;85(16):3472-5
pubmed: 11030924
Angew Chem Int Ed Engl. 2005 Dec 1;44(45):7414-8
pubmed: 16245377
J Vac Sci Technol B Nanotechnol Microelectron. 2019 May;37(3):030802
pubmed: 31032146
Nanomaterials (Basel). 2021 Aug 10;11(8):
pubmed: 34443870
Nanoscale Horiz. 2018 Mar 1;3(2):213-217
pubmed: 32254073
Phys Rev Lett. 1996 Jun 24;76(26):4935-4938
pubmed: 10061417
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Aug 1;72(Pt 4):634-41
pubmed: 27484383
Nat Mater. 2010 Sep;9(9):707-15
pubmed: 20733610
Sci Adv. 2020 Feb 21;6(8):eaay9405
pubmed: 32128417
Science. 2007 Nov 30;318(5855):1424-30
pubmed: 18048683
J Phys Chem C Nanomater Interfaces. 2015 Dec 10;119(49):27708-27720
pubmed: 26691647
J Phys Chem Lett. 2014 Jun 5;5(11):1924-8
pubmed: 26273874
Philos Trans A Math Phys Eng Sci. 2004 Nov 15;362(1824):2477-512
pubmed: 15482988
Phys Rev Lett. 2012 Aug 31;109(9):097402
pubmed: 23002881