Cooperativity of catalytic and lectin-like domain of Trypanosoma congolense trans-sialidase modulates its catalytic activity.
Journal
PLoS neglected tropical diseases
ISSN: 1935-2735
Titre abrégé: PLoS Negl Trop Dis
Pays: United States
ID NLM: 101291488
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
received:
29
07
2021
accepted:
23
01
2022
revised:
23
02
2022
pubmed:
8
2
2022
medline:
12
3
2022
entrez:
7
2
2022
Statut:
epublish
Résumé
Trans-sialidases (TS) represent a multi-gene family of unusual enzymes, which catalyse the transfer of terminal sialic acids (Sia) from sialoglycoconjugates to terminal galactose or N-acetylgalactosamine residues of oligosaccharides without the requirement of CMP-Neu5Ac, the activated Sia used by typical sialyltransferases. Enzymes comprise a N-terminal catalytic domain (CD) followed by a lectin-like domain (LD). Most work on trypanosomal TS has been done on enzymatic activities focusing on the CD of TS from Trypanosoma cruzi (causing Chagas disease in Latin America), subspecies of Trypanosoma brucei, (causing human sleeping sickness in Africa) and Trypanosoma congolense (causing African Animal Trypanosomosis in livestock). Previously, we demonstrated that T. congolense TS (TconTS)-LD binds to several carbohydrates, such as 1,4-β-mannotriose. In this study we investigated the influence of TconTS3-LD on Sia transfer efficiency of TconTS1a-CD by swapping domains. in silico analysis on structure models of TconTS enzymes revealed the potential of domain swaps between TconTS1a and TconTS3 without structural disruptions of the enzymes overall topologies. Recombinant domain swapped TconTS1a/TS3 showed clear Sia transfer activity, when using fetuin and lactose as Sia donor and acceptor substrates, respectively. While Sia transfer activity remained unchanged from the level of TconTS1a, hydrolytic release of free Neu5Ac as a side product was suppressed resulting in increased transfer efficiency. Presence of 1,4-β-mannotriose during TS reactions modulates enzyme activities enhancing transfer efficiency possibly due to occupation of the binding site in TconTS1a-LD. Interestingly this effect was in the same range as that observed when swapping TconTS1a-CD and TconTS3-LD. In summary, this study demonstrate the proof-of-principle for swapping CDs and LDs of TconTS and that TconTS3-LD influences enzymatic activity of TconTS1a-CD providing evidence that LDs play pivotal roles in modulating activities and biological functions of TconTS and possibly other TS.
Identifiants
pubmed: 35130274
doi: 10.1371/journal.pntd.0009585
pii: PNTD-D-21-01140
pmc: PMC8865650
doi:
Substances chimiques
Glycoproteins
0
Oligosaccharides
0
Protozoan Proteins
0
Sialic Acids
0
trans-sialidase
EC 3.2.1.-
Neuraminidase
EC 3.2.1.18
Acetylgalactosamine
KM15WK8O5T
Galactose
X2RN3Q8DNE
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0009585Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist. Author Thaddeus Termulun Gbem was unable to confirm their authorship contributions. On their behalf, the corresponding author has reported their contributions to the best of their knowledge.
Références
Nature. 1970 Aug 15;227(5259):680-5
pubmed: 5432063
PLoS Negl Trop Dis. 2015 Oct 16;9(10):e0004120
pubmed: 26474304
J Biochem. 2003 Jun;133(6):725-30
pubmed: 12869528
J Mol Biol. 1999 Jan 8;285(1):323-32
pubmed: 9878409
World Health Organ Tech Rep Ser. 2013;(984):1-237
pubmed: 24552089
Structure. 1995 Nov 15;3(11):1197-205
pubmed: 8591030
J Exp Med. 1991 Jul 1;174(1):179-91
pubmed: 1711561
Structure. 2003 May;11(5):557-67
pubmed: 12737821
Eur J Biochem. 2002 Jun;269(12):2941-50
pubmed: 12071958
Eur J Biochem. 1990 Feb 14;187(3):657-63
pubmed: 2303059
Mol Biochem Parasitol. 1993 Sep;61(1):1-13
pubmed: 8259122
Structure. 1994 Jun 15;2(6):535-44
pubmed: 7922030
Proteins. 2009;77 Suppl 9:114-22
pubmed: 19768677
J Comput Chem. 2005 Dec;26(16):1668-88
pubmed: 16200636
Cell Microbiol. 2012 Mar;14(3):431-45
pubmed: 22136727
Acta Crystallogr F Struct Biol Commun. 2015 May;71(Pt 5):577-85
pubmed: 25945712
Mol Cell. 2002 Oct;10(4):757-68
pubmed: 12419220
Mol Biochem Parasitol. 1993 Oct;61(2):295-310
pubmed: 8264732
J Mol Biol. 1999 Sep 17;292(2):195-202
pubmed: 10493868
J Exp Med. 1993 Feb 1;177(2):465-74
pubmed: 8426115
Mol Biochem Parasitol. 1993 Oct;61(2):285-94
pubmed: 7903427
Proteins. 2006 Mar 1;62(4):881-91
pubmed: 16385554
Protein Sci. 2003 Sep;12(9):2001-14
pubmed: 12930999
Gene. 1995 Jul 4;160(1):123-8
pubmed: 7628705
EMBO J. 2000 Jan 4;19(1):16-24
pubmed: 10619840
J Biol Chem. 2002 Dec 13;277(50):48899-904
pubmed: 12368279
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
J Biol Chem. 1991 Oct 25;266(30):20244-61
pubmed: 1939085
J Infect Dis. 2002 Aug 1;186(3):397-404
pubmed: 12134236
J Biol Chem. 2003 Jun 27;278(26):23301-10
pubmed: 12649268
Mol Biochem Parasitol. 2002 Jan;119(1):7-16
pubmed: 11755181
Mol Biochem Parasitol. 1996 Jul;79(1):21-33
pubmed: 8844669
J Biol Chem. 2022 Oct;298(10):102403
pubmed: 35995210
J Mol Biol. 2003 Jan 24;325(4):773-84
pubmed: 12507479
Glycobiology. 2004 Oct;14(10):895-907
pubmed: 15190004
Protein Sci. 1996 Nov;5(11):2298-310
pubmed: 8931148
J Biol Chem. 1996 Nov 1;271(44):27818-22
pubmed: 8910379
Nature. 2010 Jun 24;465(7301):S4-5
pubmed: 20571553
Bioinformatics. 2002;18 Suppl 2:S153-60
pubmed: 12385998
Mol Biochem Parasitol. 1984 Apr;11:309-28
pubmed: 6749184
Parasitol Today. 1993 Jun;9(6):222-5
pubmed: 15463764
Glycobiology. 2001 Apr;11(4):305-11
pubmed: 11358879
Proteins. 2006 Aug 15;64(3):559-74
pubmed: 16736488
Acta Trop. 1995 May;59(2):117-29
pubmed: 7676903
J Biol Chem. 2014 Jan 3;289(1):423-36
pubmed: 24194520
Cell. 1991 Jun 28;65(7):1117-25
pubmed: 1712251
PLoS Negl Trop Dis. 2013 Dec 05;7(12):e2549
pubmed: 24340108
J Biol Chem. 1994 Mar 18;269(11):7970-5
pubmed: 8132517
BMC Biochem. 2011 Jul 30;12:39
pubmed: 21801439
Mol Biochem Parasitol. 1994 Apr;64(2):337-40
pubmed: 7935611
Glycobiology. 1997 Apr;7(3):445-51
pubmed: 9147054