Frequency dependence and the predictability of evolution in a changing environment.

Changing environment chaos fluctuating selection frequency dependence predictability

Journal

Evolution letters
ISSN: 2056-3744
Titre abrégé: Evol Lett
Pays: England
ID NLM: 101715791

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 07 09 2021
revised: 28 10 2021
accepted: 22 11 2021
entrez: 7 2 2022
pubmed: 8 2 2022
medline: 8 2 2022
Statut: epublish

Résumé

Frequency-dependent (FD) selection, whereby fitness and selection depend on the genetic or phenotypic composition of the population, arises in numerous ecological contexts (competition, mate choice, crypsis, mimicry, etc.) and can strongly impact evolutionary dynamics. In particular, negative frequency-dependent selection (NFDS) is well known for its ability to potentially maintain stable polymorphisms, but it has also been invoked as a source of persistent, predictable frequency fluctuations. However, the conditions under which such fluctuations persist are not entirely clear. In particular, previous work rarely considered that FD is unlikely to be the sole driver of evolutionary dynamics when it occurs, because most environments are not static but instead change dynamically over time. Here, we investigate how FD interacts with a temporally fluctuating environment to shape the dynamics of population genetic change. We show that a simple metric introduced by Lewontin, the slope of frequency change against frequency near equilibrium, works as a key criterion for distinguishing microevolutionary outcomes, even in a changing environment. When this slope

Identifiants

pubmed: 35127135
doi: 10.1002/evl3.266
pii: EVL3266
pmc: PMC8802243
doi:

Types de publication

Journal Article

Langues

eng

Pagination

21-33

Informations de copyright

© 2021 The Authors. Evolution Letters published by Wiley Periodicals LLC on behalf of Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEB).

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Genetics. 1979 Nov;93(3):755-71
pubmed: 17248979
Am Nat. 2018 Jan;191(1):21-44
pubmed: 29244555
Trends Ecol Evol. 2009 Mar;24(3):157-65
pubmed: 19178980
J Evol Biol. 2008 Jul;21(4):1096-105
pubmed: 18422529
Trends Ecol Evol. 1998 Sep 1;13(9):367-70
pubmed: 21238345
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9932-E9941
pubmed: 29087300
Biol Lett. 2014 Dec;10(12):20140896
pubmed: 25505057
Genetica. 2001;112-113:417-34
pubmed: 11838779
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31969-31978
pubmed: 33257553
Evol Lett. 2020 Jan 09;4(1):83-90
pubmed: 32055414
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2164-9
pubmed: 26858416
Science. 2018 Nov 9;362(6415):
pubmed: 30409860
Mol Ecol. 2017 Apr;26(8):2204-2211
pubmed: 28099782
Evolution. 2020 Jan;74(1):89-102
pubmed: 31713847
Trends Ecol Evol. 2011 Oct;26(10):514-22
pubmed: 21763030
Science. 2018 Feb 16;359(6377):765-770
pubmed: 29449486
Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):87-97
pubmed: 20008388
Nature. 1976 Sep 23;263(5575):319-20
pubmed: 958488
Am Nat. 2021 Jan;197(1):1-17
pubmed: 33417526
Biol Lett. 2018 Aug;14(8):
pubmed: 30135118
Mol Ecol. 2004 Oct;13(10):2873-89
pubmed: 15367105
Am Nat. 2005 May;165(5):567-76
pubmed: 15795853
Genetics. 2019 Nov;213(3):987-1005
pubmed: 31527049
Evolution. 2004 Dec;58(12):2599-612
pubmed: 15696740
PLoS Genet. 2014 Nov 06;10(11):e1004775
pubmed: 25375361
Am Nat. 2015 Jun;185(6):E182-96
pubmed: 25996869
Evolution. 2018 Feb;72(2):375-385
pubmed: 29235104
Mol Ecol Resour. 2021 Jul;21(5):1529-1546
pubmed: 33682340
Evolution. 1976 Jun;30(2):314-334
pubmed: 28563044
PLoS Biol. 2010 Apr 27;8(4):e1000357
pubmed: 20463950
Genetics. 1939 Jun;24(4):538-52
pubmed: 17246937
Evolution. 2014 Nov;68(11):3166-83
pubmed: 25135455
Science. 1981 Mar 27;211(4489):1390-6
pubmed: 7466396
Ecol Lett. 2018 Aug;21(8):1255-1267
pubmed: 29790295
Nature. 1976 Jun 10;261(5560):459-67
pubmed: 934280
Ecol Lett. 2009 Nov;12(11):1261-76
pubmed: 19740111
PLoS Biol. 2013 Jul;11(7):e1001605
pubmed: 23874152
Genetics. 1958 May;43(3):419-34
pubmed: 17247767
Evolution. 1980 Mar;34(2):292-305
pubmed: 28563426
Evolution. 2015 Sep;69(9):2319-32
pubmed: 26227394
Am Nat. 1999 Mar;153(3):254-266
pubmed: 29585974
Genetics. 1954 May;39(3):280-95
pubmed: 17247483
Evol Appl. 2014 Jan;7(1):169-91
pubmed: 24454555
Science. 2002 Apr 26;296(5568):707-11
pubmed: 11976447
Evolution. 1993 Jun;47(3):982-985
pubmed: 28567889
Evolution. 2012 Feb;66(2):435-42
pubmed: 22276539
Evol Appl. 2018 Oct 26;12(7):1243-1258
pubmed: 31417612
Genetics. 1946 Mar;31:125-56
pubmed: 21021044
Science. 2017 Mar 03;355(6328):959-962
pubmed: 28254943
Evolution. 2018 Nov;72(11):2325-2342
pubmed: 30259522
Evol Lett. 2020 Mar 10;4(2):109-123
pubmed: 32313687
Nature. 2000 Aug 31;406(6799):985-8
pubmed: 10984050
Evolution. 2002 Dec;56(12):2472-83
pubmed: 12583587
Evolution. 1948 Dec;2(4):279-94
pubmed: 18104586
Nature. 2006 Jun 1;441(7093):633-6
pubmed: 16738659
Evolution. 1990 Dec;44(8):1947-1955
pubmed: 28564434
Proc Natl Acad Sci U S A. 2021 Jul 13;118(28):
pubmed: 34260398
Evolution. 1995 Feb;49(1):151-163
pubmed: 28593664
Q Rev Biol. 1996 Sep;71(3):317-64
pubmed: 8828237
Ecol Lett. 2020 Jan;23(1):149-159
pubmed: 31692246
Genetics. 2004 Jul;167(3):1425-43
pubmed: 15280253
Proc Biol Sci. 1995 Aug 22;261(1361):233-8
pubmed: 7568276
Nat Commun. 2020 Nov 5;11(1):5592
pubmed: 33154385
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):
pubmed: 33536336
Evolution. 2005 Oct;59(10):2170-84
pubmed: 16405161
Nature. 2017 Jun 8;546(7657):285-288
pubmed: 28562593
Nature. 2011 Feb 24;470(7335):479-85
pubmed: 21350480

Auteurs

Luis-Miguel Chevin (LM)

CEFE, Univ Montpellier, CNRS, EPHE, IRD Montpellier 34090 France.

Zachariah Gompert (Z)

Department of Biology Utah State University Logan Utah 84322 USA.

Patrik Nosil (P)

CEFE, Univ Montpellier, CNRS, EPHE, IRD Montpellier 34090 France.
Department of Biology Utah State University Logan Utah 84322 USA.

Classifications MeSH