A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen Cryphonectria parasitica.
Cryphonectria parasitica
DWARF14 (D14)
apocarotenoids
fungus
perception
strigolactones
α/β-hydrolase
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
22
12
2021
accepted:
26
01
2022
pubmed:
5
2
2022
medline:
2
4
2022
entrez:
4
2
2022
Statut:
ppublish
Résumé
Strigolactones (SLs) are plant hormones and important signalling molecules required to promote arbuscular mycorrhizal (AM) symbiosis. While in plants an α/β-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica, for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs. By means of computational, biochemical and genetic analyses, we identified a D14 structural homologue, CpD14. Molecular homology modelling and docking support the prediction that CpD14 interacts with and hydrolyses SLs. The recombinant CpD14 protein shows α/β hydrolytic activity in vitro against the SLs synthetic analogue GR24; its enzymatic activity requires an intact Ser/His/Asp catalytic triad. CpD14 expression in the d14-1 loss-of-function Arabidopsis thaliana line did not rescue the plant mutant phenotype. However, gene inactivation by knockout homologous recombination reduced fungal sensitivity to SLs. These results indicate that CpD14 is involved in SLs responses in C. parasitica and strengthen the role of SLs as multifunctional molecules acting in plant-microbe interactions.
Identifiants
pubmed: 35119708
doi: 10.1111/nph.18013
pmc: PMC9306968
doi:
Substances chimiques
GR24 strigolactone
0
Heterocyclic Compounds, 3-Ring
0
Lactones
0
Plant Growth Regulators
0
Plant Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1003-1017Informations de copyright
© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Références
Nature. 2008 Sep 11;455(7210):195-200
pubmed: 18690207
Nat Commun. 2019 Jan 14;10(1):191
pubmed: 30643123
J Chem Inf Model. 2018 Feb 26;58(2):219-224
pubmed: 29338240
PLoS Genet. 2014 Jan;10(1):e1004078
pubmed: 24415955
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22
pubmed: 24277808
Annu Rev Plant Biol. 2017 Apr 28;68:291-322
pubmed: 28125281
FEMS Microbiol Ecol. 2017 Aug 1;93(8):
pubmed: 28830071
Mol Plant Microbe Interact. 2016 Apr;29(4):277-86
pubmed: 26757243
Microbiology (Reading). 2009 Dec;155(Pt 12):3913-3921
pubmed: 19589830
ISME J. 2016 Jan;10(1):130-44
pubmed: 26046255
Plant J. 2021 Jan;105(2):335-350
pubmed: 33118266
Methods Mol Biol. 2021;2309:75-89
pubmed: 34028680
Curr Genet. 2017 May;63(2):201-213
pubmed: 27351888
Annu Rev Plant Biol. 2015;66:161-86
pubmed: 25621512
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Eukaryot Cell. 2003 Dec;2(6):1253-65
pubmed: 14665460
Org Biomol Chem. 2017 Oct 4;15(38):8218-8231
pubmed: 28880031
Bioinformatics. 2013 Apr 1;29(7):845-54
pubmed: 23407358
Nature. 2005 Jun 9;435(7043):824-7
pubmed: 15944706
Plant Physiol. 2007 Dec;145(4):1183-91
pubmed: 17965171
Plant Cell. 2017 Oct;29(10):2319-2335
pubmed: 28855333
Nat Commun. 2019 Feb 18;10(1):810
pubmed: 30778050
Cell Res. 2017 Jun;27(6):838-841
pubmed: 28059066
Wei Sheng Wu Xue Bao. 2014 Jul 4;54(7):803-12
pubmed: 25252462
J Biol Chem. 2018 Apr 27;293(17):6530-6543
pubmed: 29523686
Science. 2015 Oct 9;350(6257):203-7
pubmed: 26450211
Curr Genet. 2008 Jan;53(1):59-66
pubmed: 17972079
Methods Mol Biol. 2021;2309:219-231
pubmed: 34028690
Phytopathology. 2020 Jun;110(6):1180-1188
pubmed: 32207662
New Phytol. 2018 Dec;220(4):1031-1046
pubmed: 29806959
Planta. 2011 Aug;234(2):419-27
pubmed: 21688170
Curr Opin Plant Biol. 2018 Oct;45(Pt A):155-161
pubmed: 30014890
Plant Cell. 2014 Mar;26(3):1134-50
pubmed: 24610723
J Exp Bot. 2018 Apr 23;69(9):2355-2365
pubmed: 29365172
J Exp Bot. 2018 Apr 23;69(9):2175-2188
pubmed: 29309622
Front Plant Sci. 2017 Feb 07;8:124
pubmed: 28223991
Trends Plant Sci. 2013 Feb;18(2):72-83
pubmed: 23182342
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):851-6
pubmed: 24379380
Phytopathology. 2010 Oct;100(10):1100-10
pubmed: 20839945
Nature. 2018 Nov;563(7733):652-656
pubmed: 30464344
Phytochemistry. 2019 Dec;168:112112
pubmed: 31499274
Nat Chem Biol. 2016 Oct;12(10):787-794
pubmed: 27479744
Trends Plant Sci. 2017 Jun;22(6):527-537
pubmed: 28400173
J Exp Bot. 2018 Apr 23;69(9):2333-2343
pubmed: 29554337
Plant Physiol. 2008 Sep;148(1):402-13
pubmed: 18614712
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303
pubmed: 29788355
Trends Plant Sci. 2020 Apr;25(4):395-405
pubmed: 31948791
Proteins. 2006 Nov 15;65(3):712-25
pubmed: 16981200
Mol Plant Pathol. 2018 Jan;19(1):7-20
pubmed: 28142223
Cell Res. 2015 Nov;25(11):1219-36
pubmed: 26470846
New Phytol. 2016 Nov;212(3):613-626
pubmed: 27376674
Nature. 2008 Sep 11;455(7210):189-94
pubmed: 18690209
Development. 2015 Nov 1;142(21):3615-9
pubmed: 26534982
New Phytol. 2013 Apr;198(1):190-202
pubmed: 23384011
Science. 1992 Aug 7;257(5071):800-3
pubmed: 1496400
Nature. 2016 Aug 25;536(7617):469-73
pubmed: 27479325
J Chem Inf Model. 2015 Oct 26;55(10):2256-74
pubmed: 26355717
Carbohydr Polym. 2020 Feb 1;229:115505
pubmed: 31826410
PLoS Biol. 2006 Jul;4(7):e226
pubmed: 16787107
Virology. 2015 Mar;477:164-175
pubmed: 25454384
Curr Biol. 2012 Nov 6;22(21):2032-6
pubmed: 22959345
Curr Genet. 2015 Aug;61(3):309-24
pubmed: 25284291
Science. 1966 Dec 2;154(3753):1189-90
pubmed: 17780042