Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana.


Journal

Lab animal
ISSN: 1548-4475
Titre abrégé: Lab Anim (NY)
Pays: United States
ID NLM: 0417737

Informations de publication

Date de publication:
Mar 2022
Historique:
received: 22 06 2021
accepted: 14 12 2021
pubmed: 5 2 2022
medline: 9 3 2022
entrez: 4 2 2022
Statut: ppublish

Résumé

The use of small aquatic model organisms to investigate the behavioral effects of chemical exposure is becoming an integral component of aquatic ecotoxicology research and neuroactive drug discovery. Despite the increasing use of invertebrates for behavioral phenotyping in toxicological studies and chemical risk assessments, little is known regarding the potential for environmental factors-such as geometry, size, opacity and depth of test chambers-to modulate common behavioral responses. In this work, we demonstrate that test chamber geometry, size, opacity and depth can affect spontaneous, unstimulated behavioral responses of euryhaline crustacean Artemia franciscana first instar larval stages. We found that in the absence of any obvious directional cues, A. franciscana exhibited a strong innate wall preference behavior. Using different test chamber sizes and geometries, we found both increased wall preference and lowered overall distance traveled by the test shrimp in a smaller chamber with sharper-angled vertices. It was also determined through quantifiable changes in the chambers' color that the A. franciscana early larval stages can perceive, differentiate and react to differences in color or perhaps rather to light transmittance of the test chambers. The interaction between innate edge preference and positive phototaxis could be consistently altered with a novel photic stimulus system. We also observed a strong initial preference for depth in A. franciscana first instar larval stages, which diminished through the acclimatization. We postulate that the impact of test chamber designs on neurobehavioral baseline responses warrants further investigation, in particular considering the increased interest in behavioral eco-neurotoxicology applications.

Identifiants

pubmed: 35115724
doi: 10.1038/s41684-021-00908-7
pii: 10.1038/s41684-021-00908-7
doi:

Substances chimiques

Water Pollutants, Chemical 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

81-88

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Bai, Y., Henry, J. & Wlodkowic, D. Chemosensory avoidance behaviors of marine amphipods Allorchestes compressa revealed using a millifluidic perfusion technology. Biomicrofluidics 14, 014110 (2020).
doi: 10.1063/1.5131187
Bownik, A. Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci. Total Environ. 601–602, 194–205 (2017).
doi: 10.1016/j.scitotenv.2017.05.199
Libralato, G., Prato, E., Migliore, L., Cicero, A. M. & Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 69, 35–49 (2016).
doi: 10.1016/j.ecolind.2016.04.017
Henry, J. & Wlodkowic, D. Towards high-throughput chemobehavioural phenomics in neuropsychiatric drug discovery. Mar. Drugs 17, 340 (2019).
doi: 10.3390/md17060340
Morgana, S., Estévez-Calvar, N., Gambardella, C., Faimali, M. & Garaventa, F. A short-term swimming speed alteration test with nauplii of Artemia franciscana. Ecotoxicol. Environ. Saf. 147, 558–564 (2018).
doi: 10.1016/j.ecoenv.2017.09.026
Bartolomé, M. C. & Sánchez-Fortún, S. Acute toxicity and inhibition of phototaxis induced by benzalkonium chloride in Artemia franciscana larvae. Bull. Environ. Contam. Toxicol. 75, 1208–1213 (2005).
doi: 10.1007/s00128-005-0877-7
Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. Int. 18, 1–11 (2011).
doi: 10.1007/s11356-010-0367-2
Campana, O. & Wlodkowic, D. Ecotoxicology goes on a chip: embracing miniaturized bioanalysis in aquatic risk assessment. Environ. Sci. Technol. 52, 932–946 (2018).
doi: 10.1021/acs.est.7b03370
De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R. & de Groot, D. Zebrafish as potential model for developmental neurotoxicity testing. A mini review. Neurotoxicol. Teratol. 34, 545–553 (2012).
doi: 10.1016/j.ntt.2012.08.006
Blackiston, D., Shomrat, T., Nicolas, C. L., Granata, C. & Levin, M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS ONE 5, e14370 (2010).
doi: 10.1371/journal.pone.0014370
Franco-Restrepo, J. E., Forero, D. A. & Vargas, R. A. A review of freely available, open-source software for the automated analysis of the behavior of adult. zebrafish. Zebrafish 16, 223–232 (2019).
pubmed: 30625048
Henry, J., Rodriguez, A. & Wlodkowic, D. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7, e7367 (2019).
doi: 10.7717/peerj.7367
Henry, J. & Wlodkowic, D. High-throughput animal tracking in chemobehavioral phenotyping: current limitations and future perspectives. Behav. Processes 180, 104226 (2020).
doi: 10.1016/j.beproc.2020.104226
Garcia, G. R., Noyes, P. D. & Tanguay, R. L. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161, 11–21 (2016).
doi: 10.1016/j.pharmthera.2016.03.009
Rennekamp, A. J. & Peterson, R. T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24, 58–70 (2015).
doi: 10.1016/j.cbpa.2014.10.025
Cartlidge, R. & Wlodkowic, D. Caging of planktonic rotifers in microfluidic environment for sub-lethal aquatic toxicity tests. Biomicrofluidics 12, 044111 (2018).
doi: 10.1063/1.5042779
Kohler, S. A., Parker, M. O. & Ford, A. T. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 6, e5271 (2018).
doi: 10.7717/peerj.5271
Kohler, S. A., Parker, M. O. & Ford, A. T. Species-specific behaviours in amphipods highlight the need for understanding baseline behaviours in ecotoxicology. Aquat. Toxicol. 202, 173–180 (2018).
doi: 10.1016/j.aquatox.2018.07.013
Kohler, S. A., Parker, M. O. & Ford, A. T. High-throughput screening of psychotropic compounds: impacts on swimming behaviours in Artemia franciscana. Toxics 9, 64 (2021).
doi: 10.3390/toxics9030064
Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S. & Agata, K. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoolog. Lett. 1, 7 (2015).
doi: 10.1186/s40851-014-0010-z
Truong, L. et al. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci. 137, 212–233 (2014).
doi: 10.1093/toxsci/kft235
Zhang, S., Hagstrom, D., Hayes, P., Graham, A. & Collins, E.-M. S. Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians. Toxicol. Sci. 167, 26–44 (2019).
doi: 10.1093/toxsci/kfy145
Akiyama, Y., Agata, K. & Inoue, T. Spontaneous behaviors and wall-curvature lead to apparent wall preference in planarian. PLoS ONE 10, e0142214 (2015).
doi: 10.1371/journal.pone.0142214
Blaser, R. E. & Rosemberg, D. B. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS ONE 7, e36931 (2012).
doi: 10.1371/journal.pone.0036931
Harro, J. Animals, anxiety, and anxiety disorders: how to measure anxiety in rodents and why. Behav. Brain Res. 352, 81–93 (2018).
doi: 10.1016/j.bbr.2017.10.016
Faimali, M. et al. Old model organisms and new behavioral end-points: swimming alteration as an ecotoxicological response. Mar. Environ. Res. 128, 36–45 (2017).
doi: 10.1016/j.marenvres.2016.05.006
Rashid, M. T. et al. Artemia swarm dynamics and path tracking. Nonlinear Dyn. 68, 555–563 (2012).
doi: 10.1007/s11071-011-0237-6
Forward, R. B. & Rittschof, D. Brine shrimp larval photoresponses involved in diel vertical migration: activation by fish mucus and modified amino sugars. Limnol. Oceanogr. 44, 1904–1916 (1999).
doi: 10.4319/lo.1999.44.8.1904
Gerhardt, A. Aquatic behavioral ecotoxicology—prospects and limitations. Hum. Ecol. Risk Assess. 13, 481–491 (2007).
doi: 10.1080/10807030701340839
Ford, A. T. et al. The role of behavioral ecotoxicology in environmental protection. Environ. Sci. Technol. 55, 5620–5628 (2021).
doi: 10.1021/acs.est.0c06493
Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
doi: 10.1016/j.tree.2008.10.008

Auteurs

Jason Henry (J)

The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.

Yutao Bai (Y)

The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.

Daniel Williams (D)

The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.

Adrian Logozzo (A)

The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.

Alex Ford (A)

Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK.

Donald Wlodkowic (D)

The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia. donald.wlodkowic@rmit.edu.au.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH