Anti-Trichomonas vaginalis activity and chemical analysis of metabolites produced by marine-associated fungi.
Marine fungi
Metabolites
Trichomonas vaginalis
Trichomoniasis
Journal
Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
31
08
2021
accepted:
10
01
2022
pubmed:
4
2
2022
medline:
23
2
2022
entrez:
3
2
2022
Statut:
ppublish
Résumé
Trichomoniasis is the most common non-viral sexually transmitted infection worldwide and it may have serious consequences, especially for women. Currently, 5-nitroimidazole drugs are the treatment of choice for trichomoniasis, although presenting adverse effects and reported cases of drug resistance. Metabolites isolated from marine fungi have attracted considerable attention due to their unique chemical structures with diverse biological activities, including antiprotozoal activity. In this study, we showed the anti-Trichomonas vaginalis activity of fractions obtained from marine fungi and the chemical composition of the most active fraction was determined. Ethyl acetate fractions of the fungus Aspergillus niger (EAE03) and Trichoderma harzianum/Hypocrea lixii complex (EAE09) were active against T. vaginalis. These samples, EAE03 and EAE09, were also effective against the fresh clinical isolate metronidazole-resistant TV-LACM2R, presenting MIC values of 2.0 mg/mL and 1.0 mg/mL, respectively. The same MIC values were found against ATCC 30,236 T. vaginalis isolate. In vitro cytotoxicity revealed only the fraction named EAE03 with no cytotoxic effect; however, the active fractions did not promote a significant hemolytic effect after 1-h incubation. Already, the in vivo toxicity evaluation using Galleria mellonella larvae demonstrated that none of the tested samples caused a reduction in animal survival. The fraction EAE03 was followed for purification steps and analyzed by LC-DAD-MS. Eleven compounds were annotated, including butyrolactone, butanolide, and atromentin. Overall, the range of activities reported confirms the potential of marine fungi to produce bioactive molecules.
Identifiants
pubmed: 35113221
doi: 10.1007/s00436-022-07442-6
pii: 10.1007/s00436-022-07442-6
doi:
Substances chimiques
Antiprotozoal Agents
0
Metronidazole
140QMO216E
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
981-989Subventions
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 408578/2013-0
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 408718/2013-7
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 443150/2014-1
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 312292/2017-1
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 309054/2016-8
Organisme : Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
ID : 16/2551-0000244-4
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alessio C, Nyirjesy P (2019) Management of resistant trichomoniasis. Curr Infect Dis Rep 21:31. https://doi.org/10.1007/s11908-019-0687-4
doi: 10.1007/s11908-019-0687-4
pubmed: 31388764
Allegra E, Titball RW, Carter J, Championc OL (2018) Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198:469–472. https://doi.org/10.1016/j.chemosphere.2018.01.175
doi: 10.1016/j.chemosphere.2018.01.175
pubmed: 29425947
Argaez-Correa W, Alvarez-Sanchez ME, Arana-Argaez VE, Ramirez-Camacho MA, Novelo-Castilla JS, Coral-Martinez TI, Torres-Romero JC (2019) The role of iron status in the early progression of metronidazole resistance in Trichomonas vaginalis under microaerophilic conditions. J Eukaryote Microbial 66(2):309–315. https://doi.org/10.1111/jeu.12671
doi: 10.1111/jeu.12671
Boulis AG, Hamed AA, El-Awady ME, Mohamed AR, Eliwa EM, Asker MMS, Shaaban M (2020) Diverse bioactive metabolites from Penicillium sp. MMA derived from the red sea: structure identification and biological activity studies. Arch Microbiol (In Press). https://doi.org/10.1007/s00203-020-01923-x
Bromann K, Viljanen K, Moreira VM, Yli-Kauhaluoma J, Ruohonen L, Nakari-Setälä T (2014) Isolation and purification of ent-pimara-8(14),15-diene from engineered Aspergillus nidulans by accelerated solvent extraction combined with HPLC. Anal Methods 6(4):1227–1234. https://doi.org/10.1039/C3AY41640B
doi: 10.1039/C3AY41640B
Bunbamrung N, Intaraudom C, Dramae A, Komwijit S, Laorob T, Khamsaeng S, Pittayakhajonwut P (2020) Antimicrobial, antimalarial and anticholinesterase substances from the marine-derived fungus Aspergillus terreus BCC51799. Tetrahedron 76(41):131496
doi: 10.1016/j.tet.2020.131496
Cé R, Silva RC, Trentin DS, De Marchi JGB, Paese K, Guterres SS, Macedo AJ, Pohlmann AR (2020) Galleria mellonella larvae as an in vivo model to evaluate the toxicity of polymeric nanocapsules. J Nanosci Nanotechnol 20(3):1486–1494. https://doi.org/10.1166/jnn.2020.17170
doi: 10.1166/jnn.2020.17170
pubmed: 31492311
Chen M, Shao CL, Fu XM, Xu RF, Zheng JJ, Zhao DL, She ZG, Wang CY (2013) Bioactive indole alkaloids and phenyl ether derivatives from a marine-derived Aspergillus sp. fungus. J Nat Prod 76(4):547–553. https://doi.org/10.1021/np300707x
doi: 10.1021/np300707x
pubmed: 23527875
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R (2019) Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence 10(1):527–541. https://doi.org/10.1080/21505594.2019.1621649
doi: 10.1080/21505594.2019.1621649
pubmed: 31142220
pmcid: 6550544
da Silva IP, Brissow E, Kellner Filho LC, Senabio J, de Siqueira KA, Vandresen FS, Damasceno JL, Mendes SA, Tavares DC, Magalhaes LG, Junior PA, Januario AH, Soares MA (2017) Bioactive compounds of Aspergillus terreus-F7, an endophytic fungus from Hyptis suaveolens (L.) Poit. World J Microbiol Biotechnol 33(3):62. https://doi.org/10.1007/s11274-017-2228-3
doi: 10.1007/s11274-017-2228-3
pubmed: 28243983
Dewi RT, Tachibana S, Fajriah S, Hanafi M (2015) α-Glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Med Chem Res 24(2):737–743. https://doi.org/10.1007/s00044-014-1164-0
doi: 10.1007/s00044-014-1164-0
Diamond LS (1957) The establishment of various Trichomonas of animals and man in axenic cultures. J Parasitol 43:488–490
doi: 10.2307/3274682
Guo F, Li Z, Xu X, Wang K, Shao M, Zhao F, Wang H, Hua H, Pei Y, Bai J (2016) Butenolide derivatives from the plant endophytic fungus Aspergillus terreus. Fitoterapia 113:44–50. https://doi.org/10.1016/j.fitote.2016.06.014
doi: 10.1016/j.fitote.2016.06.014
pubmed: 27370101
Gao H, Guo W, Wang Q, Zhang L, Zhu M, Zhu T, Gu Q, Wang W, Li D (2013) Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett 23(6):1776–1778. https://doi.org/10.1016/j.bmcl.2013.01.051
doi: 10.1016/j.bmcl.2013.01.051
pubmed: 23411074
Hühner E, Backhaus K, Kraut R, Li SM (2018) Production of alpha-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from Aspergillus terreus. Appl Microbiol Biotechnol 102(4):1663–1672. https://doi.org/10.1007/s00253-017-8719-1
doi: 10.1007/s00253-017-8719-1
pubmed: 29305695
Kim JH, Lee CH (2009) Atromentin-induced apoptosis in human leukemia U937 cells. J Microbiol Biotec 19(9):946–950. https://doi.org/10.4014/jmb.0811.617
doi: 10.4014/jmb.0811.617
Lee YM, Kim MJ, Li H, Zhang P, Bao B, Lee KJ, Jung JH (2013) Marine-derived Aspergillus species as a source of bioactive secondary metabolites. Mar Biotechnol 15(5):499–519. https://doi.org/10.1007/s10126-013-9506-3
doi: 10.1007/s10126-013-9506-3
Li DH, Han T, Guan LP, Bai J, Zhao N, Li ZL, Wu X, Hua HM (2016) New naphthopyrones from marine-derived fungus Aspergillus niger 2HL-M-8 and their in vitro antiproliferative activity. Nat Prod Res 30(10):1116–1122. https://doi.org/10.1080/14786419.2015.1043553
doi: 10.1080/14786419.2015.1043553
pubmed: 26179399
Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164(2):233–241. https://doi.org/10.1016/j.micres.2007.07.002
doi: 10.1016/j.micres.2007.07.002
pubmed: 17681460
Liao WY, Shen XN, Lin LH, Yang HL, Han HY, Chen JW, Kuo SC, Wu SH, Liaw CC (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75(4):630–635. https://doi.org/10.1021/np200866z
doi: 10.1021/np200866z
pubmed: 22360613
Loges L, Silva DB, Paulino GVB, Landell MF (2020) Macedo AJ (2020) Polyketides from marine-derived Aspergillus welwitschiae inhibit Staphylococcus aureus virulence factors and potentiate vancomycin antibacterial activity in vivo. Microb Pathog 143:104066. https://doi.org/10.1016/j.micpath.2020.104066
doi: 10.1016/j.micpath.2020.104066
pubmed: 32068159
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169(4):262–278. https://doi.org/10.1016/j.micres.2013.07.014
doi: 10.1016/j.micres.2013.07.014
pubmed: 23958059
Menezes CB, Frasson AP, Tasca T (2016) Trichomoniasis are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell 3(9):404–419. https://doi.org/10.15698/mic2016.09.526
doi: 10.15698/mic2016.09.526
pubmed: 28357378
pmcid: 5354568
Moghadamtousi SZ, Nikzad S, Kadir HA, Abubakar S, Zandi K (2015) Potential antiviral agents from marine fungi: an overview. Mar Drugs 13(7):4520–4538. https://doi.org/10.3390/md13074520
doi: 10.3390/md13074520
pubmed: 26204947
Nitta K, Fujita N, Yoshimura T, Arai K, Yamamoto Y (1983) Metabolic products of Aspergillus terreus. IX. Biosynthesis of butyrolactone derivatives isolated from strains IFO 8835 and 4100. Chem Pharm Bull 31(5):1528–1533. https://doi.org/10.1248/cpb.31.1528
doi: 10.1248/cpb.31.1528
Ojima N, Takenaka S, Seto S (1973) New butenolides from Aspergillus terreus. Phytochemistry 12(10):2527–2529. https://doi.org/10.1016/0031-9422(73)80469-8
doi: 10.1016/0031-9422(73)80469-8
Pereira F (2019) Have marine natural product drug discovery efforts been productive and how can we improve their efficiency? Expert Opin Drug Discov 14(8):717–722. https://doi.org/10.1080/17460441.2019.1604675
doi: 10.1080/17460441.2019.1604675
pubmed: 30982363
Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ (2010) Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett 20(19):5677–5680. https://doi.org/10.1016/j.bmcl.2010.08.024
doi: 10.1016/j.bmcl.2010.08.024
pubmed: 20797856
Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, Chico RM, Smolak A, Newman L, Gottlieb S, Thwin SS, Broutet N, Taylor MM (2019) Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 97(8):548-562P. https://doi.org/10.2471/BLT.18.228486
doi: 10.2471/BLT.18.228486
pubmed: 31384073
pmcid: 6653813
Sanchez JF, Somoza AD, Keller NP, Wang CC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29(3):351–371. https://doi.org/10.1039/c2np00084a
doi: 10.1039/c2np00084a
pubmed: 22228366
pmcid: 4568942
Scopel M, dos Santos O, Frasson AP, Abraham WR, Tasca T, Henriques AT, Macedo AJ (2013) Anti-Trichomonas vaginalis activity of marine-associated fungi from the South Brazilian Coast. Exp Parasitol 133(2):211–216. https://doi.org/10.1016/j.exppara.2012.11.006
doi: 10.1016/j.exppara.2012.11.006
pubmed: 23201217
Secor WE, Meites E, Starr MC, Workowski KA (2014) Neglected parasitic infections in the United States: trichomoniasis. Am J Trop Med Hyg 90(5):800–804. https://doi.org/10.4269/ajtmh.13-0723
doi: 10.4269/ajtmh.13-0723
pubmed: 24808247
pmcid: 4015567
Silva LN, Da Hora GCA, Soares TA, Bojer MS, Ingmer H, Macedo AJ, Trentin DS (2017) Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 7(1):2823. https://doi.org/10.1038/s41598-017-02712-1
doi: 10.1038/s41598-017-02712-1
pubmed: 28588273
pmcid: 5460262
Sun Y, Liu J, Li L, Gong c, Wang S, Yang F, Hua H, Lin H, (2018) New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg Med Chem Lett 28(3):315–318. https://doi.org/10.1016/j.bmcl.2017.12.049
doi: 10.1016/j.bmcl.2017.12.049
pubmed: 29295795
Tang W, Liu ZL, Mai XY, Qi X, Li DH, Gu QQ, Li J (2020) Identification of gliotoxin isolated from marine fungus as a new pyruvate kinase M2 inhibitor. Biochem Biophys Res Commun 528(3):594–600. https://doi.org/10.1016/j.bbrc.2020.05.139
doi: 10.1016/j.bbrc.2020.05.139
pubmed: 32507600
Trein MR, Oliveira LR, Rigo GV, Garcia MAR, Petro-Silveira B, Trentin DS, Macedo AJ, Regasini LO, Tasca T (2018) Anti-Trichomonas vaginalis activity of chalcone and amino-analogues. Parasitol Res 118(2):607–615. https://doi.org/10.1007/s00436-018-6164-4
doi: 10.1007/s00436-018-6164-4
pubmed: 30535524
Workowski KA, Bachmann LH, Chan PA, Johnston CM, Muzny CA, Park I, Reno H, Zenilman JM, Bolan GA (2021) Sexually transmitted diseases treatment guidelines, 2021. Centers for Disease Control and Prevention (2021) MMWR 70 (RR04): 1–192
Zhou S, Wang M, Feng Q, Lin Y, Zhao H (2016) A study on biological activity of marine fungi from different habitats in coastal regions. Springerplus 5(1):1966. https://doi.org/10.1186/s40064-016-3658-3
doi: 10.1186/s40064-016-3658-3
pubmed: 27933244
pmcid: 5108748