Exposome and Skin. Part 2. The Influential Role of the Exposome, Beyond UVR, in Actinic Keratosis, Bowen's Disease and Squamous Cell Carcinoma: A Proposal.
Actinic keratosis
Dermatology
Environmental factors
Exposome
Hormones
Microbiome
Nutrition
Pollution
Prevention strategies
Squamous cell carcinoma
Journal
Dermatology and therapy
ISSN: 2193-8210
Titre abrégé: Dermatol Ther (Heidelb)
Pays: Switzerland
ID NLM: 101590450
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
02
10
2021
pubmed:
4
2
2022
medline:
4
2
2022
entrez:
3
2
2022
Statut:
ppublish
Résumé
Actinic keratosis (AK) is the main risk factor for the development of cutaneous invasive squamous cell carcinoma (SCC). It represents the first sign of severe chronic ultraviolet radiation exposure, which has a clear significant effect. Nevertheless, the skin is exposed to many other exposome factors which should be thoroughly considered. Our aim was to assess the impact of exposome factors other than ultraviolet radiation (UVR) on the etiopathology of AK and Bowen's disease (BD) and progression of AK to SCC and to design tailored prevention strategies. We performed an exhaustive literature search in September 2021 through PubMed on the impact of exposome factors other than UVR on AK, BD and SCC. We conducted several parallel searches combining terms of the following topics: AK, BD, SCC and microbiome, hormones, nutrition, alcohol, tobacco, viral infections, chemical contaminants and air pollution. Notably, skin microbiome studies have shown how Staphylococcus aureus infections are associated with AK and AK-to-SCC progression by the production of chronic inflammation. Nutritional studies have demonstrated how a caloric restriction in fat intake, oral nicotinamide and moderate consumption of wine significantly reduce the number of premalignant keratoses and SCC. Regarding lifestyle factors, both alcohol and smoking are associated with the development of SCC in a dose-dependent manner. Relevant environmental factors are viral infections and chemical contaminants. Human papillomavirus infections induce deregulation of cellular proliferation and are associated with AK, BD and SCC. In addition to outdoor jobs, occupations such as industrial processing and farming also increase the risk of developing keratoses and SCC. The exposome of AK will undoubtedly help the understanding of its etiopathology and possible progression to SCC and will serve as a basis to design tailored prevention strategies.
Identifiants
pubmed: 35112326
doi: 10.1007/s13555-021-00644-3
pii: 10.1007/s13555-021-00644-3
pmc: PMC8850498
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
361-380Informations de copyright
© 2022. The Author(s).
Références
Marks R, Rennie G, Selwood TS. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet. 1988;1(8589):795–7.
pubmed: 2895318
doi: 10.1016/S0140-6736(88)91658-3
Berker D, McGregor JM, Hughes BR, British Association of Dermatologists Therapy Guidelines and Audit Subcommittee. Guidelines for the management of actinic keratoses. Br J Dermatol. 2007;156:222–30.
pubmed: 17223860
doi: 10.1111/j.1365-2133.2006.07692.x
Stockfleth E, Kerl H, Guideline Subcommittee of the European Dermatology Forum. Guidelines for the management of actinic keratoses. Eur J Dermatol. 2006;16:599–606.
pubmed: 17229598
Heaphy MR Jr, Ackerman AB. The nature of solar keratosis: a critical review in historical perspective. J Am Acad Dermatol. 2000;43(1 Pt 1):138–50.
pubmed: 10863242
doi: 10.1067/mjd.2000.107497
De Oliveira ECV, da Motta VRV, Pantoja PC, et al. Actinic keratosis—review for clinical practice. Int J Dermatol. 2019;58(4):400–7.
pubmed: 30070357
doi: 10.1111/ijd.14147
Cockerell CJ. Histopathology of incipient intraepidermal squamous cell carcinoma (“actinic keratosis”). J Am Acad Dermatol. 2000;42(1 Pt 2):11–7.
pubmed: 10607351
doi: 10.1067/mjd.2000.103344
Yantsos VA, Conrad N, Zabawski E, Cockerell CJ. Incipient intraepidermal cutaneous squamous cell carcinoma: a proposal for reclassifying and grading solar (actinic) keratoses. Semin Cutan Med Surg. 1999;18:3–14.
pubmed: 10188837
doi: 10.1016/S1085-5629(99)80003-0
Röwert-Huber J, Patel MJ, Forschner T, et al. Actinic keratosis is an early in situ squamous cell carcinoma: a proposal for reclassification. Br J Dermatol. 2007;156(3):8–12.
pubmed: 17488400
doi: 10.1111/j.1365-2133.2007.07860.x
Cassarino D, Dadras S, Matthew R, et al. Diagnostic pathology: neoplastic dermatopathology. 2nd ed. Elsevier; 2017. p. 80–3.
Neagu TP, Tiglis M, Botezatu D, et al. Clinical, histological and therapeutic features of Bowen’s disease. Rom J Morphol Embryol. 2017;58(1):33–40.
pubmed: 28523295
Rossi R, Mori M, Lotti T. Actinic keratosis. Int J Dermatol. 2007;47:895–904.
doi: 10.1111/j.1365-4632.2007.03166.x
Fernández-Figueras MT. From actinic keratosis to squamous cell carcinoma: pathophysiology revisited. J Eur Acad Dermatol Venereol. 2017;31(2):5–7.
pubmed: 28263020
doi: 10.1111/jdv.14151
Bath-Hextall FJ, Matin RN, Wilkinson D, Leonardi-Bee J. Interventions for cutaneous Bowen’s disease. Cochrane Database Syst Rev. 2013;6:CD007281.
Siegel JA, Korgavkar K, Weinstock MA. Current perspective on actinic keratosis: a review. Br J Dermatol. 2017;177(2):350–8.
pubmed: 27500794
doi: 10.1111/bjd.14852
Werner RN, Sammain A, Erdmann R, Hartmann V, Stockfleth E, Nast A. The natural history of actinic keratosis: a systematic review. Br J Dermatol. 2013;169(3):502–18.
pubmed: 23647091
doi: 10.1111/bjd.12420
Green AC. Epidemiology of actinic keratoses. Curr Probl Dermatol. 2015;46:1–7.
pubmed: 25561199
doi: 10.1159/000366525
Burton KA, Ashack KA, Khachemoune A. Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol. 2016;17(5):491–508.
pubmed: 27358187
doi: 10.1007/s40257-016-0207-3
Green AC, Olsen CM. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177(2):373–81.
pubmed: 28211039
doi: 10.1111/bjd.15324
Gupta AK, Paquet M, Villanueva E, Brintnell W. Interventions for actinic keratoses. Cochrane Database Syst Rev. 2012;12(12):CD004415.
pubmed: 23235610
Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166:1069–80.
pubmed: 22251204
doi: 10.1111/j.1365-2133.2012.10830.x
Sandoval M, Ortiz M, Díaz C, Majerson D, Molgó M. Cutaneous manifestations in renal transplant recipients of Santiago, Chile. Transplant Proc. 2009;41(9):3752–4.
pubmed: 19917380
doi: 10.1016/j.transproceed.2009.05.041
Keller B, Braathen LR, Hans-Peter M, Hunger RE. Skin cancers in renal transplant recipients: a description of the renal transplant cohort in Bern. Swiss Med Wkly. 2010;140:w13036.
pubmed: 20652847
Wallingford SC, Russell SA, Vail A, Proby CM, Lear JT, Green AC. Actinic keratoses, actinic field change and associations with squamous cell carcinoma in renal transplant recipients in Manchester, UK. Acta Derm Venereol. 2015;95:830–4.
pubmed: 25784002
Sahebian A, Pandeya N, Chambers DC, Soyer HP, Green AC. High prevalence of skin cancers and actinic keratoses in lung transplant recipients. J Heart Lung Transplant. 2018;37(3):420–2.
pubmed: 29217109
doi: 10.1016/j.healun.2017.11.016
Traianou A, Ulrich M, Apalla Z, et al. Risk factors for actinic keratosis in eight European centres: a case-control study. Br J Dermatol. 2012;167(2):36–42.
pubmed: 22881586
doi: 10.1111/j.1365-2133.2012.11085.x
De Vries E, Trakatelli M, Kalabalikis D, et al. Known and potential new risk factors for skin cancer in European populations: a multicentre case-control study. Br J Dermatol. 2012;167(2):1–13.
pubmed: 22881582
doi: 10.1111/j.1365-2133.2012.11081.x
Molho-Pessach V, Lotem M. Ultraviolet radiation and cutaneous carcinogenesis. Curr Probl Dermatol. 2007;35:14–27.
pubmed: 17641487
doi: 10.1159/000106407
Schmitt JV, Miot HA. Actinic keratosis: a clinical and epidemiological revision. An Bras Dermatol. 2012;87(3):425–34.
pubmed: 22714759
doi: 10.1590/S0365-05962012000300012
Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers. 2005;14:1847–50.
doi: 10.1158/1055-9965.EPI-05-0456
Miller GW, Jones DP. The nature of nurture. Refining the definition of the exposome. Toxicol Sci. 2014;137(1):1–2. https://doi.org/10.1093/toxsci/kft251 .
doi: 10.1093/toxsci/kft251
pubmed: 24213143
Dodds A, Chia A, Shumack S. Actinic keratosis. Rationale and management. Dermatol Ther. 2014;4:11–31.
doi: 10.1007/s13555-014-0049-y
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–55.
pubmed: 29332945
doi: 10.1038/nrmicro.2017.157
Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009;18(2):472–8.
pubmed: 19155437
doi: 10.1158/1055-9965.EPI-08-0905
Wood DLA, Lachner N, Tan JM, et al. A natural history of actinic keratosis and cutaneous squamous cell carcinoma microbiomes. MBio. 2018;9(5):e01432-18.
pubmed: 30301852
pmcid: 6178618
doi: 10.1128/mBio.01432-18
Madhusudhan N, Pausan MR, Halwachs B, et al. Molecular profiling of keratinocyte skin tumors links Staphylococcus aureus overabundance and increased human β-defensin-2 expression to growth promotion of squamous cell carcinoma. Cancers. 2020;12(3):541.
pmcid: 7139500
doi: 10.3390/cancers12030541
Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305(2):253–64.
pubmed: 7510036
doi: 10.1016/0027-5107(94)90245-3
Aggarwal BB, Shishodia S, Sandur SK, Pandey MJ, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605–21.
pubmed: 16889756
doi: 10.1016/j.bcp.2006.06.029
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.
pubmed: 11229684
doi: 10.1016/S0140-6736(00)04046-0
Chang AH, Parsonnet J. Role of bacteria in oncogenesis. Clin Microbiol Rev. 2010;23(4):837–57.
pubmed: 20930075
pmcid: 2952975
doi: 10.1128/CMR.00012-10
Andersson T, Bergdahl GE, Saleh K, et al. Common skin bacteria protect their host from oxidative stress through secreted antioxidant RoxP. Sci Rep. 2019;9(1):3596.
pubmed: 30837648
pmcid: 6401081
doi: 10.1038/s41598-019-40471-3
Dragneva Y, Anuradha CD, Valeva A, Hoffmann A, Bhakdi S, Husmann M. Subcytocidal attack by staphylococcal α-toxin activates NF-κB and induces interleukin-8 production. Infect Immun. 2001;69:2630–5.
pubmed: 11254628
pmcid: 98200
doi: 10.1128/IAI.69.4.2630-2635.2001
Niyonsaba F, Ushio H, Nakano N, et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127(3):594–604.
pubmed: 17068477
doi: 10.1038/sj.jid.5700599
Nakatsuji T, Chen TH, Butcher AM, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018;4(2):eaa04502.
doi: 10.1126/sciadv.aao4502
Souak D, Barreau M, Courtois A, et al. Challenging cosmetic innovation: the skin microbiota and probiotics protect the skin from UV-induced damage. Microorganisms. 2021;9(5):936.
pubmed: 33925587
pmcid: 8145394
doi: 10.3390/microorganisms9050936
Skowron K, Bauza-Kaszewska J, Kraszewska Z, et al. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms. 2021;9(3):543.
pubmed: 33808031
pmcid: 7998121
doi: 10.3390/microorganisms9030543
Zouboulis CC. The human skin as a hormone target and an endocrine gland. Hormones. 2004;3(1):9–26.
pubmed: 16982574
doi: 10.14310/horm.2002.11109
Mahamat-Saleh Y, Aune D, Schlesinger S. 25-Hydroxyvitamin D status, vitamin D intake, and skin cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Nature. 2020;10:13151.
Bikle DD. Vitamin D and skin cancer. J Nutr. 2004;134:3472–8.
doi: 10.1093/jn/134.12.3472S
Napgal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005;26(5):662–87.
doi: 10.1210/er.2004-0002
Slominsky A, Brozyna AA, Zmijewski MA, et al. The role of classical and novel forms of vitamin D in the pathogenesis and progression of nonmelanoma skin cancers. Adv Exp Med Biol. 2020;1268:257–83.
doi: 10.1007/978-3-030-46227-7_13
Seifert M, Rech M, Meineke V, Tilgen W, Reichrath J. Differential biological effects of 1,25-dihydroxyvitamin D
pubmed: 15225804
doi: 10.1016/j.jsbmb.2004.03.002
Tang JY, Xiao TZ, Oda Y, et al. Vitamin D
doi: 10.1158/1940-6207.CAPR-10-0285
Tang JY, Parimi N, Wu A, et al. Inverse association between serum 25(OH) vitamin D levels and non-melanoma skin cancer in elderly men. Cancer Causes Control. 2010;21(3):387–91.
pubmed: 19921445
doi: 10.1007/s10552-009-9470-4
Liang G, Nan H, Qureshi AA, Han J. Pre-diagnostic plasma 25-hydroxyvitamin D levels and risk of non-melanoma skin cancer in women. PLoS ONE. 2012;7(4):e35211.
pubmed: 22493740
pmcid: 3320875
doi: 10.1371/journal.pone.0035211
Eide MJ, Johnson DA, Jacobsen GR, et al. Vitamin D and nonmelanoma skin cancer in a health maintenance organization cohort. Arch Dermatol. 2011;147(12):1379–84.
pubmed: 21844426
doi: 10.1001/archdermatol.2011.231
Hosseini MS, Salarvand F, Ehsani AH, et al. Relationship between level of serum 25-hydroxyvitamin D and risk of squamous cell carcinoma in an Iranian population. Dermatol Pract Concept. 2019;9(4):278–82.
pubmed: 31723461
pmcid: 6830561
doi: 10.5826/dpc.0904a06
Van Deventer L, Kannenberg SMH, du Toit J. Vitamin D status in adult patients with nonmelanoma skin cancer in Cape Town, South Africa: a cross-sectional study. Int j Dermatol. 2018;57(8):922–7.
pubmed: 29808911
doi: 10.1111/ijd.14068
Sertznig P, Seifert M, Tilgen W, Reichrath J. Peroxisome proliferator-activated receptors (PPARs) and the human skin: importance of PPARs in skin physiology and dermatologic diseases. Am J Clin Dermatol. 2008;9(1):15–31.
pubmed: 18092840
doi: 10.2165/00128071-200809010-00002
Baumann CA, Rusch HP. Effect of diet on tumors induced by ultraviolet light. Am J Cancer. 1939;35:213–21.
Black HS, Lenger WA, Gerguis J, Thornby JI. Relation of antioxidants and level of dietary lipid to epidermal lipid peroxidation and ultraviolet carcinogenesis. Cancer Res. 1985;45:6254–9.
pubmed: 4063976
Black HS. Influence of dietary factors on actinically-induced skin cancer. Mutat Res. 1998;422(1):185–90.
pubmed: 9920444
doi: 10.1016/S0027-5107(98)00191-2
Tannenbaum A, Silverstone H. The influence of the degree of caloric restriction on the formation of skin tumors and hepatomas in mice. Cancer Res. 1949;9(12):724–7.
pubmed: 15395906
Boutwell RK. Diet and anticarcinogenesis in the mouse skin two-stage model. Cancer Res. 1983;43(5):2465s–8s.
pubmed: 6339050
Birt DF, Pinch HJ, Barnett T, Phan A, Dimitroff K. Inhibition of skin tumor promotion by restriction of fat and carbohydrate calories in SENCAR mice. Cancer Res. 1993;53:27–31.
pubmed: 8416746
Black HS, Herd A, Goldberg LH, et al. Effect of a low-fat diet on the incidence of actinic keratosis. N Engl J Med. 1994;330(18):1272–5.
pubmed: 8145782
doi: 10.1056/NEJM199405053301804
Hughes MC, Van der Pols JC, Marks GC, Green AC. Food intake and risk of squamous cell carcinoma of the skin in a community: the Nambour Skin Cancer Cohort Study. Int J Cancer. 2006;119:1953–60.
pubmed: 16721782
doi: 10.1002/ijc.22061
Ibiebele TI, Van der Pols JC, Hughes MC, Marks GC, Williams GM, Green AC. Dietary pattern in association with squamous cell carcinoma of the skin: a prospective study. Am J Clin Nutr. 2007;85:1401–8.
pubmed: 17490979
doi: 10.1093/ajcn/85.5.1401
Ibiebele TI, van der Pols JC, Hughes MC, Marks GC, Green AC. Dietary fat intake and risk of skin cancer: a prospective study in Australian adults. Int J Cancer. 2009;125:1678–84.
pubmed: 19462452
doi: 10.1002/ijc.24481
Girotti A. Mechanisms of lipid peroxidation. J Free Radic Biol Med. 1985;1(2):87–95.
pubmed: 3915303
doi: 10.1016/0748-5514(85)90011-X
Lo W, Black H. Formation of cholesterol-derived photoproducts in human skin. J Invest Dermatol. 1972;58(5):278–83.
pubmed: 5023648
doi: 10.1111/1523-1747.ep12540288
Black HS. Can diet prevent nonmelanoma skin cancer progression? Expert Rev Anticancer Ther. 2005;5(5):801–8.
pubmed: 16221050
doi: 10.1586/14737140.5.5.801
Black HS, Thornby JI, Gerguis J, Lenger W. Influence of dietary omega-6, -3 fatty acid sources on the initiation and promotion stages of photocarcinogenesis. Photochem Photobiol. 1992;56(2):195–9.
pubmed: 1502263
doi: 10.1111/j.1751-1097.1992.tb02147.x
Black HS, Rhodes LE. The potential of omega-3 fatty acids in the prevention of non-melanoma skin cancer. Cancer Detect Prev. 2006;30(3):224–32.
pubmed: 16872755
doi: 10.1016/j.cdp.2006.04.008
Hughes MCB, Williams GM, Fourtanier A, Green AC. Food intake, dietary patterns, and actinic keratoses of the skin: a longitudinal study. Am J Clin Nutr. 2009;89(4):1246–55.
pubmed: 19244366
doi: 10.3945/ajcn.2008.27053
Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–9.
pubmed: 20500789
doi: 10.1111/j.1753-4887.2010.00287.x
Lo W, Black HS. Inhibition of carcinogen formation in skin irradiated with ultraviolet light. Nature. 1973;246:489–91.
pubmed: 4762198
doi: 10.1038/246489a0
Black HS, Chan JT. Suppression of ultraviolet light-induced tumor formation by dietary antioxidants. J Invest Dermatol. 1975;65(4):412–4.
pubmed: 1176794
doi: 10.1111/1523-1747.ep12607661
Yiasemides E, Sivapirabu G, Halliday GM, Park J, Damian DL. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans. Carcinogenesis. 2009;30(1):101–5.
pubmed: 19028705
doi: 10.1093/carcin/bgn248
Kuchel JM, Barnetson RS, Halliday GM. Cyclobutane pyrimidine dimer formation is a molecular trigger for solar-simulated ultraviolet radiation-induced suppression of memory immunity in humans. Photochem Photobiol Sci. 2005;4:577–82.
pubmed: 16052262
doi: 10.1039/b504068j
Park J, Halliday GM, Surjana D, Damian DL. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem Photobiol. 2010;86:942–8.
pubmed: 20492562
doi: 10.1111/j.1751-1097.2010.00746.x
Surjana D, Halliday GM, Damian DL. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex-vivo skin. Carcinogenesis. 2013;34:1144–9.
pubmed: 23349012
doi: 10.1093/carcin/bgt017
Surjana D, Halliday GM, Martin AJ, Moloney FJ, Damian DL. Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol. 2012;132(5):1497–500.
pubmed: 22297641
doi: 10.1038/jid.2011.459
Chen AC, Martin AJ, Choy B, et al. A phase 3 randomized trial of nicotinamide for skin cancer chemoprevention. N Engl J Med. 2015;373(17):1618–26.
pubmed: 26488693
doi: 10.1056/NEJMoa1506197
Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96(10):1027–39.
pubmed: 8841165
doi: 10.1016/S0002-8223(96)00273-8
McNaughton SA, Marks GC, Green AC. Role of dietary factors in the development of basal cell cancer and squamous cell cancer of the skin. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1596–607.
pubmed: 16030089
doi: 10.1158/1055-9965.EPI-05-0026
Kune GA, Bannerman S, Field B, et al. Diet, alcohol, smoking, serum beta-carotene, and vitamin A in male nonmelanocytic skin cancer patients and controls. Nutr Cancer. 1992;18(3):237–44.
pubmed: 1296197
doi: 10.1080/01635589209514224
Karagas MR, Greenberg ER, Nierenberg D, et al. Risk of squamous cell carcinoma of the skin in relation to plasma selenium, alpha-tocopherol, beta-carotene, and retinol: a nested case-control study. Cancer Epidemiol Biomarkers Prev. 1997;6(1):25–9.
pubmed: 8993794
Frieling UM, Schaumberg DA, Kupper TS, Muntwyler J, Hennekens CH. A randomized, 12-year primary-prevention trial of beta carotene supplementation for nonmelanoma skin cancer in the physician’s health study. Arch Dermatol. 2000;136(2):179–84.
pubmed: 10677093
doi: 10.1001/archderm.136.2.179
Green A, Williams G, Neale R, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999;354(9180):723–9.
pubmed: 10475183
doi: 10.1016/S0140-6736(98)12168-2
Greenberg ER, Baron JA, Stukel TA, et al. A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. The Skin Cancer Prevention Study Group. N Engl J Med. 1990;323(12):789–95.
pubmed: 2202901
doi: 10.1056/NEJM199009203231204
Moon TE, Levine N, Cartmel B, et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol Biomarkers Prev. 1997;6(11):949–56.
pubmed: 9367069
Duffield-Lillico AJ, Slate EH, Reid ME, et al. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst. 2003;95(19):1477–81.
pubmed: 14519754
doi: 10.1093/jnci/djg061
Haseeb S, Alexander B, Santi RL, Liprandi AS, Baranchuk A. What’s in wine? A clinician’s perspective. Trends Cardiovasc Med. 2019;29(2):97–106.
pubmed: 30104174
doi: 10.1016/j.tcm.2018.06.010
Williams RJ, Spencer JPE, Rice-Evans CR. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36(7):838–49.
pubmed: 15019969
doi: 10.1016/j.freeradbiomed.2004.01.001
Soleas GJ, Grass L, Josephy PD, Goldberg DM, Diamandis EP. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin Biochem. 2002;35(2):119–24.
pubmed: 11983346
doi: 10.1016/S0009-9120(02)00275-8
Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–20.
pubmed: 8985016
doi: 10.1126/science.275.5297.218
Basu-Modak S, Ali D, Gordon M, et al. Suppression of UVA-mediated release of labile iron by epicatechin—a link to lysosomal protection. Free Radic Biol Med. 2006;41(8):1197–204.
pubmed: 17015166
doi: 10.1016/j.freeradbiomed.2006.06.008
Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.
pubmed: 16732220
doi: 10.1038/nrd2060
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018;58(9):1428–47.
pubmed: 28001084
doi: 10.1080/10408398.2016.1263597
Pentek T, Newenhouse E, O’Brien B, Chauhan AS. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules. 2017;22(1):137.
pmcid: 6155877
doi: 10.3390/molecules22010137
Hao YQ, Huang WX, Feng HX, et al. Study of apoptosis related factors regulatory mechanism of resveratrol to human skin squamous cell carcinoma A431 xenograft in nude mice. Zhonghua Yi Xue Za Zhi. 2013;93(6):464–8.
pubmed: 23660270
Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7(8):599–612.
pubmed: 17646865
doi: 10.1038/nrc2191
Yen H, Dhana A, Okhovat JP, Qureshi A, Keum N, Cho E. Alcohol intake and risk of nonmelanoma skin cancer: a systematic review and dose-response meta-analysis. Br J Dermatol. 2017;177(3):696–707.
pubmed: 28745396
doi: 10.1111/bjd.15647
Fargnoli MC, Altomare G, Benati E, et al. Prevalence and risk factors of actinic keratosis in patients attending Italian dermatology clinics. Eur J Dermatol. 2017;27(6):599–608.
pubmed: 29311040
doi: 10.1684/ejd.2017.3126
Fania L, Abeni D, Esposito I, et al. Behavioral and demographic factors associated with occurrence of non-melanoma skin cancer in organ transplant recipients. G Ital Dermatol Venereol. 2020;155(5):669–75.
pubmed: 30251802
doi: 10.23736/S0392-0488.18.06099-6
Akdeniz M, Hahnel E, Ulrich C, Blume-Peytavi U, Kottner J. Prevalence and associated factors of skin cancer in aged nursing home residents: a multicenter prevalence study. PLoS ONE. 2019;14(4):e0215379.
pubmed: 31009466
pmcid: 6476496
doi: 10.1371/journal.pone.0215379
Karagas MR, Stukel TA, Greenberg R, et al. Risk of subsequent basal cell carcinoma and squamous cell carcinoma of the skin among patients with prior skin cancer. JAMA. 1992;267(24):3305–10.
pubmed: 1597912
doi: 10.1001/jama.1992.03480240067036
Grodstein F, Speizer FE, Hunter DJ. A prospective study of incident squamous cell carcinoma of the skin in the nurses’ health study. J Natl Cancer Inst. 1995;87(14):1061–6.
pubmed: 7616597
doi: 10.1093/jnci/87.14.1061
Aubry F, MacGibbon B. Risk factors of squamous cell carcinoma of the skin. A case-control study in the Montreal region. Cancer. 1985;15(4):907–11.
doi: 10.1002/1097-0142(19850215)55:4<907::AID-CNCR2820550433>3.0.CO;2-5
De Hertog SA, Wensveen CA, Bastiaens MT, et al. Relation between smoking and skin cancer. J Clin Oncol. 2001;19(1):231–8.
pubmed: 11134217
doi: 10.1200/JCO.2001.19.1.231
López EPM, Miñarro-Del Moral RM, Martínez-García C, et al. Lifestyles, environmental and phenotypic factors associated with lip cancer: a case-control study in southern Spain. Br J Cancer. 2003;88(11):1702–7.
doi: 10.1038/sj.bjc.6600975
Rollison DE, Iannacone MR, Messina JL, et al. Case-control study of smoking and non-melanoma skin cancer. Cancer Causes Control. 2012;23(2):245–54.
pubmed: 22101452
doi: 10.1007/s10552-011-9872-y
Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol. 2000;74:11636–41.
pubmed: 11090162
pmcid: 112445
doi: 10.1128/JVI.74.24.11636-11641.2000
Pett MR, Alazawi WO, Roberts I, et al. Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res. 2004;64(4):1359–68.
pubmed: 14973079
doi: 10.1158/0008-5472.CAN-03-3214
Syrjänen S. The role of human papillomavirus infection in head and neck cancers. Ann Oncol. 2010;21(7):vii 243–5.
Alotaibi L, Provost N, Gagnon S, Franco EL, Coutlée F. Diversity of cutaneous human papillomavirus types in individuals with and without skin lesion. J Clin Virol. 2006;36:133–40.
pubmed: 16678481
doi: 10.1016/j.jcv.2006.02.007
Forslund O, Iftner T, Andersson K, et al. Cutaneous human papillomaviruses found in sun-exposed skin: beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis. 2007;196(6):876–83.
pubmed: 17703418
doi: 10.1086/521031
Purdie KJ, Pennington J, Proby CM, et al. The promoter of a novel human papillomavirus (HPV77) associated with skin cancer displays UV responsiveness, which is mediated through a consensus p53 binding sequence. EMBO J. 1999;18(19):5359–69.
pubmed: 10508168
pmcid: 1171605
doi: 10.1093/emboj/18.19.5359
Jackson S, Storey A. E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene. 2000;19(4):592–8.
pubmed: 10698529
doi: 10.1038/sj.onc.1203339
Bavinck JNB, Feltkamp M, Struij L, Schegget JT. Human papillomavirus infection and skin cancer risk in organ transplant recipients. J Investig Dermatol Symp Proc. 2001;6(3):207–11.
doi: 10.1046/j.0022-202x.2001.00048.x
Bavinck JN, Stark S, Petridis AK, et al. The presence of antibodies against virus-like particles of epidermodysplasia verruciformis-associated human papillomavirus type 8 in patients with actinic keratoses. Br J Dermatol. 2000;142:103–9.
doi: 10.1046/j.1365-2133.2000.03248.x
Wenande E, Bech-Thomsen N, Haedersdal M. Reduction in actinic keratoses following 9-valent human papilloma virus vaccination. Dermatol Ther. 2020;33(4):13454.
doi: 10.1111/dth.13454
Rady PL, Yen A, Rollefson JL, et al. Herpesvirus-like DNA sequences in non-Kaposi’s sarcoma skin lesions of transplant patients. Lancet. 1995;345(8961):1339–40.
pubmed: 7752756
doi: 10.1016/S0140-6736(95)92538-4
Kholer S, Kamel OW, Chang PP, Smoller BR. Absence of human herpesvirus 8 and Epstein-Barr virus genome sequences in cutaneous epithelial neoplasms arising in immunosuppressed organ-transplant patients. J Cutan Pathol. 1997;24(9):559–63.
doi: 10.1111/j.1600-0560.1997.tb01460.x
Kobayashi K, Tanese K, Kubo A, et al. Identification of a human papillomavirus type 58 lineage in multiple Bowen’s disease on the fingers: case report and published work review. J Dermatol. 2018;45(10):1195–8.
pubmed: 30035309
doi: 10.1111/1346-8138.14574
Eftekhari H, Nejad KG, Azimi SZ, Rafiei R, Mesbah A. Bowen’s disease associated with two human papilloma virus types. Acta Med Iran. 2017;55(9):594–6.
pubmed: 29202554
Baek YS, Jeon J, Kim A, Song HJ, Kim C. Human papillomavirus is more frequently detected in the pelvic than non-pelvic area in patients with squamous cell carcinoma in situ (Bowen’s disease). Eur J Dermatol. 2020;30(2):111–8.
pubmed: 32538355
doi: 10.1684/ejd.2020.3700
Idriss MH, Misri R, Boer-Auer A. Orthokeratotic Bowen disease: a histopathologic immunohistochemical and molecular study. J Cutan Pathol. 2016;43(1):24–31.
pubmed: 26272630
doi: 10.1111/cup.12610
Mii S, Amoh Y, Tanabe K, Kitasato H, Sato Y, Katsuoka K. Nestin expression in Bowen’s disease and Bowen’s carcinoma associated with human papillomavirus. Eur J Dermatol. 2011;21(4):515–9.
pubmed: 21700534
doi: 10.1684/ejd.2011.1391
Hama N, Ohtsuka T, Yamazaki S. Detection of mucosal human papilloma virus DNA in Bowenoid papulosis, Bowen’s disease and squamous cell carcinoma of the skin. J Dermatol. 2006;33(5):331–7.
pubmed: 16700665
doi: 10.1111/j.1346-8138.2006.00078.x
Hsu CK, Chen YC, Yang WL, Hsu KF, Chao SC, Lee YY. Bowen’s disease with features resembling myrmecia wart. J Dermatol. 2015;42(1):90–3.
pubmed: 25387725
doi: 10.1111/1346-8138.12691
Bellot TR, Baez CF, Almeida SG, et al. Molecular prevalence of Merkel cell polyomavirus in nonmelanoma skin cancer in a Brazilian population. Clin Exp Dermatol. 2017;42(4):390–4.
doi: 10.1111/ced.13069
Schipani G, Delduca E, Todaro G, et al. Arsenic and chromium levels in hair correlate with actinic keratosis/non melanoma skin cancer: results of an observational controlled study. G Ital Dermatol Venereol. 2020. https://doi.org/10.23736/S0392-0488.20.06600-6 .
Yoshida T, Yamauchi H, Sun GF. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol. 2004;198(3):243–52.
pubmed: 15276403
doi: 10.1016/j.taap.2003.10.022
Smith AH, Lingas EO, Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ. 2000;78(9):1093–103.
pubmed: 11019458
pmcid: 2560840
Mazumder DNG, Haque R, Ghosh N, et al. Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol. 1998;27(5):871–7.
doi: 10.1093/ije/27.5.871
Col M, Col C, Soran A, Sayli BS, Ozturk S. Arsenic-related Bowen’s disease, palmar keratosis, and skin cancer. Environ Health Perspect. 1999;107(8):687–9.
pubmed: 10417369
pmcid: 1566498
Watson K, Creamer D. Arsenic-induced keratoses and Bowen’s disease. Clin Exp Dermatol. 2004;29(1):46–8.
pubmed: 14723721
doi: 10.1111/j.1365-2230.2004.01447.x
Yamaoka H, Ikoma N, Kato M, et al. Multiple Bowen’s disease in a patient with a history of possible arsenic exposure: a case report. Tokai J Exp Clin Med. 2011;36(2):53–7.
pubmed: 21769774
Gawkrodger DJ. Occupational skin cancers. Occup Med (Lond). 2004;54(7):458–63.
doi: 10.1093/occmed/kqh098
Hei TK, Liu SX, Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci. 1998;95:8103–7.
pubmed: 9653147
pmcid: 20936
doi: 10.1073/pnas.95.14.8103
Cavigelli M, Li WW, Lin A, Su B, Yoshioka K, Karin M. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J. 1996;15(22):6269–79.
pubmed: 8947050
pmcid: 452450
doi: 10.1002/j.1460-2075.1996.tb01017.x
Spiewak R. Pesticides as a cause of occupational skin diseases in farmers. Ann Agric Environ Med. 2001;8(1):1–5.
pubmed: 11426918
Bowra GT, Duffield DP, Osborn AJ, Purchase IF. Premalignant and neoplastic skin lesions associated with occupational exposure to “tarry” byproducts during manufacture of 4,4′-bipyridyl. Br J Ind Med. 1982;39(1):76–81.
pubmed: 7066224
pmcid: 1008931
Wang JD, Li WE, Hu FC, Hu KH. Occupational risk and the development of premalignant skin lesions among paraquat manufacturers. Br J Ind Med. 1987;44:196–200.
pubmed: 3493801
pmcid: 1007804
Cooper SP, Downs T, Burau K, et al. A survey of actinic keratoses among paraquat production workers and a nonexposed friend reference group. Am J Ind Med. 1994;25(3):335–47.
pubmed: 8160654
doi: 10.1002/ajim.4700250304
Howard JK. A clinical survey of paraquat formulation workers. Br J Ind Med. 1979;36(3):220–3.
pubmed: 500781
pmcid: 1008568
Chester G, Woolen BH. Studies of the occupational exposure of Malaysian plantation workers to paraquat. Br J Ind Med. 1981;38:23–33.
Fishbein L. Sources, nature and levels of air pollutants. In: Tomatis L, editor. Air pollution and human cancer. ESO monographs (European School of Oncology). Berlin, Heidelberg: Springer; 1990. p. 9–34.
doi: 10.1007/978-3-642-75906-2_2
Drakaki E, Dessinioti C, Antoniou CV. Air pollution and the skin. Front Environ Sci. 2014;2(11):1–6.
Dagouassat M, Lanone S, Boczkowski J. Interaction of matrix metalloproteinases with pulmonary pollutants. Eur Respir J. 2012;39:1021–32.
pubmed: 22241746
doi: 10.1183/09031936.00195811
Jin SP, Li Z, Choi EK, et al. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci. 2018;S0923–1811(18):30202.
Datzmann T, Markevych I, Trautmann F, Heinrich J, Schmitt J, Falko T. Outdoor air pollution, green space, and cancer incidence in Saxony: a semi-individual cohort study. BMC Public Health. 2018;18(715):1–10.
Yanagi Y, Assunçao JV, Barrozo LV. The impact of atmospheric particulate matter on cancer incidence and mortality in the city of Sao Paulo. Brazil Cad Saude Publica. 2012;28(9):1737–48.
pubmed: 23033188
doi: 10.1590/S0102-311X2012000900012
Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8(3):444–72.
pubmed: 9498904
doi: 10.1023/A:1018465507029
Ifegwu OC, Anyakora C. Chapter Six—polycyclic aromatic hydrocarbons: part I. Exposure Adv Clin Chem. 2015;72(277):304.
Siddens LK, Larkin A, Krueger SK, et al. Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol. 2012;264(3):377–86.
pubmed: 22935520
pmcid: 3483092
doi: 10.1016/j.taap.2012.08.014
Matsumoto Y, Ide F, Kishi R, et al. Aryl hydrocarbon receptor plays a significant role in mediating airborne particulate-induced carcinogenesis in mice. Environ Sci Technol. 2007;41:3775–80.
pubmed: 17547212
doi: 10.1021/es062793g
Revel A, Raanani H, Younglai E, et al. Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. J Appl Toxicol. 2003;23:255–61.
pubmed: 12884409
doi: 10.1002/jat.916
Burke KE, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health. 2009;25(4–5):219–24.
pubmed: 19651790
doi: 10.1177/0748233709106067
Liu Z, Lu Y, Rosenstein B, Lebwohl M, Wei H. Benzo[a]pyrene enhances the formation of 8-hydroxy-2’-deoxyguanosine by ultraviolet A radiation in calf thymus DNA and human epidermoid carcinoma cells. Biochemistry. 1998;37:10307–12.
pubmed: 9665739
doi: 10.1021/bi980606o
Wang Y, Saladi R, Wei H. Synergistic carcinogenesis of chemical carcinogens and long wave-length UVA radiation. Trends Photochem & Photobio. 2003;10:31–45.
Fritsche E, Schäfer C, Calles C, et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmic target for ultraviolet B radiation. Proc Natl Acad Sci. 2007;104(21):8851–6.
pubmed: 17502624
pmcid: 1885591
doi: 10.1073/pnas.0701764104
Pollet M, Shaik S, Mescher M, et al. The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ. 2018;25:1823–36.
pubmed: 30013037
pmcid: 6180092
doi: 10.1038/s41418-018-0160-1
Chahal HS, Lin Y, Ransohoff KJ, et al. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12048.
pubmed: 27424798
pmcid: 4960294
doi: 10.1038/ncomms12048
Rowland FS. Stratospheric ozone depletion. Philos Trans R Soc Lond B Biol Sci. 2006;361(1469):769–90.
pubmed: 16627294
pmcid: 1609402
doi: 10.1098/rstb.2005.1783
Goldsmith LA. Skin effects of air pollution. Otolaryngol Head Neck Surg. 1996;114:217–9.
pubmed: 8637736
doi: 10.1016/S0194-5998(96)70169-9
Abolhasani R, Araghi F, Tabary M, Aryannejad A, Mashinchi B, Robati RM. The impact of air pollution on skin and related disorders: a comprehensive review. Dermatol Ther. 2021;34:e14840.
pubmed: 33527709
doi: 10.1111/dth.14840
Balato N, Megna M, Ayala F, Balato A, Napolitano M, Patruno C. Effects of climate changes on skin diseases. Expert Rev Anti Infect Ther. 2014;12(2):171–81.
pubmed: 24404995
doi: 10.1586/14787210.2014.875855
McKenzie RL, Weinreis C, Johnston PV, et al. Effects of urban pollution on UV spectral irradiances. Atmos Chem Phys. 2008;8:5683–97.
doi: 10.5194/acp-8-5683-2008
Fuks KB, Woodby B, Valacchi G. Skin damage by tropospheric ozone. Hautarzt. 2019. https://doi.org/10.1007/s00105-018-4319-y .
doi: 10.1007/s00105-018-4319-y
pubmed: 30747245
Thiele JJ, Podda M, Packer L. Tropospheric ozone: an emerging environmental stress to skin. Biol Chem. 1997;378:1299–305.
pubmed: 9426190