The bidirectional relationship of thyroid disease and atrial fibrillation: Established knowledge and future considerations.
Atrial fibrillation
Hypothyroidism
Subclinical thyroid disease
Thyroid disease
Journal
Reviews in endocrine & metabolic disorders
ISSN: 1573-2606
Titre abrégé: Rev Endocr Metab Disord
Pays: Germany
ID NLM: 100940588
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
accepted:
28
01
2022
pubmed:
4
2
2022
medline:
3
6
2022
entrez:
3
2
2022
Statut:
ppublish
Résumé
Atrial fibrillation (AF) tends to occur frequently in patients with thyroid disease, primarily hyperthyroidism. In hyperthyroidism, increased levels of thyroid hormones, via intra- and extranuclear mechanisms, have profound effects on cardiac electrophysiology. Hypothyroidism carries a lower risk for AF and is mainly associated with the overtreatment of hypothyroid patients. New-onset AF is frequently the only manifestation of thyroid disease, which renders screening for thyroid dysfunction in that scenario clinically useful. Managing thyroid disease and comorbid AF is essential. This includes thyroid hormones control along with conventional AF therapy. However, there are several open issues with this comorbid duo. The optimal management of thyroid disease and its impact on AF burden remains obscure. There is scanty information on clear-cut benefits for therapy of subclinical thyroid disease and screening of asymptomatic patients. Furthermore, the immunogenetic overlap between the autoantibodies in Graves' disease and AF genesis may lead to novel therapeutic implications. The objective of this review is to summarize the up-to-date epidemiology, pathogenesis, pathophysiology and management of interacting thyroid disease and AF.
Identifiants
pubmed: 35112273
doi: 10.1007/s11154-022-09713-0
pii: 10.1007/s11154-022-09713-0
doi:
Substances chimiques
Thyroid Hormones
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
621-630Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Madariaga AG, Santos Palacios S, Guillén-Grima F, Galofré JC. The incidence and prevalence of thyroid dysfunction in Europe: A meta-analysis. J Clin Endocrinol Metab. 2014;99(3):923–31. https://doi.org/10.1210/jc.2013-2409 .
doi: 10.1210/jc.2013-2409
Grossman A, Weiss A, Koren-Morag N, Shimon I, Beloosesky Y, Meyerovitch J. Subclinical Thyroid Disease and Mortality in the Elderly: A Retrospective Cohort Study. Am J Med. 2016;129(4):423–30. https://doi.org/10.1016/j.amjmed.2015.11.027 .
doi: 10.1016/j.amjmed.2015.11.027
pubmed: 26714213
Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter: A population-based study. Arch Intern Med. 2004;164(15):1675–8. https://doi.org/10.1001/archinte.164.15.1675 .
doi: 10.1001/archinte.164.15.1675
pubmed: 15302638
Jia G, Sowers JR. Autoantibodies of β-adrenergic and M2 cholinergic receptors: atrial fibrillation in hyperthyroidism. Endocrine. 2015;49(2):301–3. https://doi.org/10.1007/s12020-015-0556-3 .
doi: 10.1007/s12020-015-0556-3
pubmed: 25700563
pmcid: 4447568
Peeters RP. Subclinical Hypothyroidism. Solomon CG, ed. N Engl J Med. 2017;376(26):2556–2565. https://doi.org/10.1056/NEJMcp1611144
Grais IM, Sowers JR. Thyroid and the heart. Am J Med. 2014;127(8):691–8. https://doi.org/10.1016/j.amjmed.2014.03.009 .
doi: 10.1016/j.amjmed.2014.03.009
pubmed: 24662620
pmcid: 4318631
Bellew SD, Moman R, Lohse CM, Hess EP, Bellolio MF. Validation of a decision rule for selective TSH screening in atrial fibrillation. West J Emerg Med. 2015;16(1):195–202. https://doi.org/10.5811/westjem.2014.11.23490 .
doi: 10.5811/westjem.2014.11.23490
pubmed: 25671041
pmcid: 4307717
Croker EE, McGrath SA, Rowe CW. Thyroid disease: Using diagnostic tools effectively. Aust J Gen Pract. 2021;50(1–2):16–21. https://doi.org/10.31128/AJGP-10-20-5693
Salem JE, Shoemaker MB, Bastarache L, et al. Association of Thyroid Function Genetic Predictors with Atrial Fibrillation: A Phenome-Wide Association Study and Inverse-Variance Weighted Average Meta-analysis. JAMA Cardiol. 2019;4(2):136–43. https://doi.org/10.1001/jamacardio.2018.4615 .
doi: 10.1001/jamacardio.2018.4615
pubmed: 30673079
pmcid: 6439628
Fitzgerald SP, Bean NG, Falhammar H, Tuke J. Clinical Parameters Are More Likely to Be Associated with Thyroid Hormone Levels than with Thyrotropin Levels: A Systematic Review and Meta-Analysis. Thyroid. 2020;30(12):1695–709. https://doi.org/10.1089/thy.2019.0535 .
doi: 10.1089/thy.2019.0535
pubmed: 32349628
pmcid: 7757573
Baumgartner C, Da Costa BR, Collet TH, et al. Thyroid Function Within the Normal Range, Subclinical Hypothyroidism, and the Risk of Atrial Fibrillation. Circulation. 2017;136(22):2100–16. https://doi.org/10.1161/CIRCULATIONAHA.117.028753 .
doi: 10.1161/CIRCULATIONAHA.117.028753
pubmed: 29061566
pmcid: 5705446
Gammage MD, Parle JV, Holder RL, et al. Association between serum free thyroxine concentration and atrial fibrillation. Arch Intern Med. 2007;167(9):928–34. https://doi.org/10.1001/archinte.167.9.928 .
doi: 10.1001/archinte.167.9.928
pubmed: 17502534
Yeap BB, Alfonso H, Hankey GJ, et al. Higher free thyroxine levels are associated with all-cause mortality in euthyroid older men: The Health in Men Study. Eur J Endocrinol. 2013;169(4):401–8. https://doi.org/10.1530/EJE-13-0306 .
doi: 10.1530/EJE-13-0306
pubmed: 23853210
Amouzegar A, Heidari M, Gharibzadeh S, Mehran L, Tohidi M, Azizi F. The Association between Blood Pressure and Normal Range Thyroid Function Tests in a Population Based Tehran Thyroid Study. Horm Metab Res. 2016;48(3):151–6. https://doi.org/10.1055/s-0035-1564131 .
doi: 10.1055/s-0035-1564131
pubmed: 26671752
Cappola AR, Fried L, Arnold A. Thyroid Status, Cardiovascular Risk, and Mortality in Older Adults. Surv Anesthesiol. 2006;50(6):289. https://doi.org/10.1097/01.sa.0000248434.75521.67 .
doi: 10.1097/01.sa.0000248434.75521.67
Chaker L, Korevaar TIM, Medici M, et al. Thyroid Function Characteristics and Determinants: The Rotterdam Study. Thyroid. 2016;26(9):1195–204. https://doi.org/10.1089/thy.2016.0133 .
doi: 10.1089/thy.2016.0133
pubmed: 27484151
Anderson JL, Jacobs V, May HT, et al. Free thyroxine within the normal reference range predicts risk of atrial fibrillation. J Cardiovasc Electrophysiol. 2020;31(1):18–29. https://doi.org/10.1111/jce.14183 .
doi: 10.1111/jce.14183
pubmed: 31515856
Reddy V, Taha W, Kundumadam S, Khan M. Atrial fibrillation and hyperthyroidism: A literature review. Indian Heart J. 2017;69(4):545–50. https://doi.org/10.1016/j.ihj.2017.07.004 .
doi: 10.1016/j.ihj.2017.07.004
pubmed: 28822529
pmcid: 5560908
Selmer C, Olesen JB, Hansen ML, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: A large population cohort study. BMJ. 2012;345(7885):1–12. https://doi.org/10.1136/bmj.e7895 .
doi: 10.1136/bmj.e7895
Kahaly GJ, Bartalena L, Hegedüs L, Leenhardt L, Poppe K, Pearce SH. 2018 European thyroid association guideline for the management of graves’ hyperthyroidism. Eur Thyroid J. 2018;7(4):167–86. https://doi.org/10.1159/000490384 .
doi: 10.1159/000490384
pubmed: 30283735
pmcid: 6140607
Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26(5):704–28. https://doi.org/10.1210/er.2003-0033 .
doi: 10.1210/er.2003-0033
pubmed: 15632316
Razvi S, Jabbar A, Pingitore A, et al. Thyroid Hormones and Cardiovascular Function and Diseases. J Am Coll Cardiol. 2018;71(16):1781–96. https://doi.org/10.1016/j.jacc.2018.02.045 .
doi: 10.1016/j.jacc.2018.02.045
pubmed: 29673469
Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart. 2019;105(24):1860–7. https://doi.org/10.1136/heartjnl-2018-314267 .
doi: 10.1136/heartjnl-2018-314267
pubmed: 31444267
Biondi B. Heart failure and thyroid dysfunction. Eur J Endocrinol. 2012;167(5):609–18. https://doi.org/10.1530/EJE-12-0627 .
doi: 10.1530/EJE-12-0627
pubmed: 22956554
Shi M, Manouchehri AM, Shaffer CM, et al. Genetic Thyrotropin Regulation of Atrial Fibrillation Risk Is Mediated Through an Effect on Height. J Clin Endocrinol Metab. 2021;106(7):2124–32. https://doi.org/10.1210/clinem/dgab272 .
doi: 10.1210/clinem/dgab272
pubmed: 33895829
pmcid: 8208678
Tribulova N, Kurahara LH, Hlivak P, Hirano K, Bacova BS. Pro-arrhythmic signaling of thyroid hormones and its relevance in subclinical hyperthyroidism. Int J Mol Sci. 2020;21(8). https://doi.org/10.3390/ijms21082844
Kato T, Iwasaki YK, Nattel S. Connexins and atrial fibrillation: Filling in the gaps. Circulation. 2012;125(2):203–6. https://doi.org/10.1161/CIRCULATIONAHA.111.075432 .
doi: 10.1161/CIRCULATIONAHA.111.075432
pubmed: 22158757
Komiya N, Isomoto S, Nakao K, Hayano M, Yano K. Electrophysiological abnormalities of the atrial muscle in patients with paroxysmal atrial fibrillation associated with hyperthyroidism. Clin Endocrinol (Oxf). 2002;56(1):39–44. https://doi.org/10.1046/j.0300-0664.2001.01459.x .
doi: 10.1046/j.0300-0664.2001.01459.x
Wustmann K, Kucera JP, Zanchi A, et al. Activation of electrical triggers of atrial fibrillation in hyperthyroidism. J Clin Endocrinol Metab. 2008;93(6):2104–8. https://doi.org/10.1210/jc.2008-0092 .
doi: 10.1210/jc.2008-0092
pubmed: 18349059
Patanè S, Marte F. Atrial fibrillation associated with exogenous subclinical hyperthyroidism, changing axis deviation, troponin-I positive and without acute coronary syndrome. Int J Cardiol. 2011;150(3):e85–8. https://doi.org/10.1016/j.ijcard.2009.03.011 .
doi: 10.1016/j.ijcard.2009.03.011
pubmed: 19342112
Chen YC, Chen SA, Chen YJ, Chang MS, Chan P, Lin CI. Effects of thyroid hormone on the arrhythmogenic activity of pulmonary vein cardiomyocytes. J Am Coll Cardiol. 2002;39(2):366–72. https://doi.org/10.1016/S0735-1097(01)01731-4 .
doi: 10.1016/S0735-1097(01)01731-4
pubmed: 11788233
Po SS, Scherlag BJ, Yamanashi WS, et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Hear Rhythm. 2006;3(2):201–8. https://doi.org/10.1016/j.hrthm.2005.11.008 .
doi: 10.1016/j.hrthm.2005.11.008
Ertek S, Cicero AF. State of the art paper Hyperthyroidism and cardiovascular complications: a narrative review on the basis of pathophysiology. Arch Med Sci. 2013;5:944–52. https://doi.org/10.5114/aoms.2013.38685 .
doi: 10.5114/aoms.2013.38685
Morshed SA, Davies TF. Graves’ Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies. Horm Metab Res. 2015;47(10):727–34. https://doi.org/10.1055/s-0035-1559633 .
doi: 10.1055/s-0035-1559633
pubmed: 26361259
pmcid: 5047290
Okosieme OE, Taylor PN, Evans C, et al. Primary therapy of Graves’ disease and cardiovascular morbidity and mortality: a linked-record cohort study. Lancet Diabetes Endocrinol. 2019;7(4):278–87. https://doi.org/10.1016/S2213-8587(19)30059-2 .
doi: 10.1016/S2213-8587(19)30059-2
pubmed: 30827829
Li H, Murphy T, Zhang L, et al. β1-Adrenergic and M2 muscarinic autoantibodies and thyroid hormone facilitate induction of atrial fibrillation in male rabbits. Endocrinology. 2016;157(1):16–22. https://doi.org/10.1210/en.2015-1655 .
doi: 10.1210/en.2015-1655
pubmed: 26517045
Galloway A, Li H, Vanderlinde-Wood M, et al. Activating autoantibodies to the β1/2-adrenergic and M2 muscarinic receptors associate with atrial tachyarrhythmias in patients with hyperthyroidism. Endocrine. 2015;49(2):457–63. https://doi.org/10.1007/s12020-014-0495-4 .
doi: 10.1007/s12020-014-0495-4
pubmed: 25500789
Stavrakis S, Yu X, Patterson E, et al. Activating Autoantibodies to the Beta-1 Adrenergic and M2 Muscarinic Receptors Facilitate Atrial Fibrillation in Patients With Graves’ Hyperthyroidism. J Am Coll Cardiol. 2009;54(14):1309–16. https://doi.org/10.1016/j.jacc.2009.07.015 .
doi: 10.1016/j.jacc.2009.07.015
pubmed: 19778674
pmcid: 2801559
Park YJ, Yoon JW, Kim K Il, et al. Subclinical Hypothyroidism Might Increase the Risk of Transient Atrial Fibrillation After Coronary Artery Bypass Grafting. Ann Thorac Surg. 2009;87(6):1846–1852. https://doi.org/10.1016/j.athoracsur.2009.03.032
Lee H-C, Huang KTL, Wang X-L, Shen W-K. Autoantibodies and Cardiac Arrhythmias. Hear Rhythm. 2011;8(11):1788–95. https://doi.org/10.1016/j.hrthm.2011.06.032 .
doi: 10.1016/j.hrthm.2011.06.032
Li J. The Role of Autoantibodies in Arrhythmogenesis. Curr Cardiol Rep. 2021;23(1). https://doi.org/10.1007/s11886-020-01430-x
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med. 2021;8: 650278. https://doi.org/10.3389/fcvm.2021.650278 .
doi: 10.3389/fcvm.2021.650278
pubmed: 34026868
pmcid: 8131678
Ozaydin M, Kutlucan A, Turker Y, et al. Association of inflammation with atrial fibrillation in hyperthyroidism. J Geriatr Cardiol. 2012;9(4):344–8. https://doi.org/10.3724/SP.J.1263.2012.06251 .
doi: 10.3724/SP.J.1263.2012.06251
pubmed: 23341838
pmcid: 3545250
Elahi MM, Flatman S, Matata BM. Tracing the origins of postoperative atrial fibrillation: the concept of oxidative stress-mediated myocardial injury phenomenon. Eur J Cardiovasc Prev Rehabil. 2008;15(6):735–41. https://doi.org/10.1097/HJR.0b013e328317f38a .
doi: 10.1097/HJR.0b013e328317f38a
pubmed: 19020458
Pearce EN, Bogazzi F, Martino E, et al. The prevalence of elevated serum C-reactive protein levels in inflammatory and noninflammatory thyroid disease. Thyroid. 2003;13(7):643–8. https://doi.org/10.1089/105072503322239989 .
doi: 10.1089/105072503322239989
pubmed: 12964969
Mayyas F, Saadeh N, Al-Muqbel K, Van Wagoner DR. Plasma endothelin-1 levels are increased in atrial fibrillation patients with hyperthyroidism. PLoS One. 2018;13(12). https://doi.org/10.1371/journal.pone.0208206
Lu R, Ma N, Jiang Z, Mei J. Endothelin-1 is associated with dilatation of the left atrium and can be an independent predictor of atrial fibrillation after mitral valve surgery. Interact Cardiovasc Thorac Surg. 2018;26(1):66–70. https://doi.org/10.1093/icvts/ivx250 .
doi: 10.1093/icvts/ivx250
pubmed: 29049685
Tilly N, Schneider J, Leidig-Bruckner G, Sommer U, Kasperk C. Endothelin-1 Levels in Patients with Disorders of the Thyroid Gland. Exp Clin Endocrinol Diabetes. 2003;111(02):80–4. https://doi.org/10.1055/s-2003-39234 .
doi: 10.1055/s-2003-39234
pubmed: 12746758
Mayyas F, Niebauer M, Zurick A, et al. Association of left atrial endothelin-1 with atrial rhythm, size, and fibrosis in patients with structural heart disease. Circ Arrhythmia Electrophysiol. 2010;3(4):369–79. https://doi.org/10.1161/CIRCEP.109.924985 .
doi: 10.1161/CIRCEP.109.924985
Bielecka-Dabrowa A, Mikhailidis DP, Rysz J, Banach M. The mechanisms of atrial fibrillation in hyperthyroidism. Thyroid Res. 2009;2(1):4. https://doi.org/10.1186/1756-6614-2-4 .
doi: 10.1186/1756-6614-2-4
pubmed: 19341475
pmcid: 2680813
Patanè S, Marte F. Atrial fibrillation associated with exogenous subclinical hyperthyroidism, changing axis deviation, troponin-I positive and without acute coronary syndrome. Int J Cardiol. 2011;150(3). https://doi.org/10.1016/j.ijcard.2009.03.011
Sawin CT. Subclinical hyperthyroidism and atrial fibrillation. Thyroid. 2002;12(6):501–3. https://doi.org/10.1089/105072502760143881 .
doi: 10.1089/105072502760143881
pubmed: 12165113
Selmer C, Olesen JB, Hansen ML, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: A large population cohort study. BMJ. 2012;345(7885). https://doi.org/10.1136/bmj.e7895
Auer J, Scheibner P, Mische T, Langsteger W, Eber O, Eber B. Subclinical hyperthyroidism as a risk factor for atrial fibrillation. Am Heart J. 2001;142(5):838–42. https://doi.org/10.1067/mhj.2001.119370 .
doi: 10.1067/mhj.2001.119370
pubmed: 11685172
Goldstein SA, Green J, Huber K, et al. Characteristics and Outcomes of Atrial Fibrillation in Patients With Thyroid Disease (from the ARISTOTLE Trial). Am J Cardiol. 2019;124(9):1406–12. https://doi.org/10.1016/j.amjcard.2019.07.046 .
doi: 10.1016/j.amjcard.2019.07.046
pubmed: 31474328
pmcid: 7194994
Ogbera A, Dada O, Kuku S. The metabolic syndrome in thyroid disease: A report from Nigeria. Indian J Endocrinol Metab. 2012;16(3):417. https://doi.org/10.4103/2230-8210.95688 .
doi: 10.4103/2230-8210.95688
pubmed: 22629511
pmcid: 3354852
Benjamin EJ, Levy D, Vaziri SM, D’agostino RB, Belanger AJ, Wolf PA. Independent Risk Factors for Atrial Fibrillation in a Population-Based Cohort: The Framingham Heart Study. JAMA J Am Med Assoc. 1994;271(11):840–4. https://doi.org/10.1001/jama.1994.03510350050036 .
doi: 10.1001/jama.1994.03510350050036
Chauhan V. Hypothyroidism was 300% more frequent than hyperthyroidism in patients with atrial fibrillation enrolled over 10 years. Am J Med. 2015;128(10): e51. https://doi.org/10.1016/j.amjmed.2015.06.012 .
doi: 10.1016/j.amjmed.2015.06.012
pubmed: 26386994
Zhang Y, Dedkov EI, Teplitsky D, et al. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circ Arrhythmia Electrophysiol. 2013;6(5):952–9. https://doi.org/10.1161/CIRCEP.113.000502 .
doi: 10.1161/CIRCEP.113.000502
Gerritsen RJ, van den Brom WE, Stokhof AA. Relationship between atrial fibrillation and primary hypothyroidism in the dog. Vet Q. 1996;18(2):49–51. https://doi.org/10.1080/01652176.1996.9694614 .
doi: 10.1080/01652176.1996.9694614
pubmed: 8792593
Kim E-J, Lyass A, Wang N. Relation of Hypothyroidism and Incident Atrial Fibrillation (from the Framingham Heart Study). Bone. 2008;23(1):1–7. https://doi.org/10.1016/j.ahj.2013.10.012.Relation .
doi: 10.1016/j.ahj.2013.10.012.Relation
Papaleontiou M, Haymart MR. Too Much of a Good Thing? A Cautionary Tale of Thyroid Cancer Overdiagnosis and Overtreatment. Thyroid. 2020;30(5):651–2. https://doi.org/10.1089/thy.2020.0185 .
doi: 10.1089/thy.2020.0185
pubmed: 32159460
pmcid: 7232665
Lee EK, Ahn HY, Ku EJ, et al. Cardiovascular Outcomes in Thyroid Cancer Patients Treated With Thyroidectomy: A Meta-Analysis. J Clin Endocrinol Metab. Published online August 4, 2021:1–10. https://doi.org/10.1210/clinem/dgab576
Hesselink ENK, Lefrandt JD, Schuurmans EP, et al. Increased risk of atrial fibrillation after treatment for differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2015;100(12):4563–9. https://doi.org/10.1210/jc.2015-2782 .
doi: 10.1210/jc.2015-2782
Surks MI, Ortiz E, Daniels GH, et al. Subclinical Thyroid Disease: Scientific Review and Guidelines for Diagnosis and Management. J Am Med Assoc. 2004;291(2):228–38. https://doi.org/10.1001/jama.291.2.228 .
doi: 10.1001/jama.291.2.228
Gencer B, Collet TH, Virgini V, et al. Subclinical thyroid dysfunction and the risk of heart failure events an individual participant data analysis from 6 prospective cohorts. Circulation. 2012;126(9):1040–9. https://doi.org/10.1161/CIRCULATIONAHA.112.096024 .
doi: 10.1161/CIRCULATIONAHA.112.096024
pubmed: 22821943
Martínez-Comendador J, Marcos-Vidal JM, Gualis J, et al. Subclinical Hypothyroidism Might Increase the Risk of Postoperative Atrial Fibrillation after Aortic Valve Replacement. Thorac Cardiovasc Surg. 2016;64(5):427–33. https://doi.org/10.1055/s-0035-1555753 .
doi: 10.1055/s-0035-1555753
pubmed: 26121379
Sairaku A, Nakano Y, Uchimura Y, et al. Increased left atrial pressure in non-heart failure patients with subclinical hypothyroidism and atrial fibrillation. Endocr Connect. 2016;5(3):101–6. https://doi.org/10.1530/EC-16-0012 .
doi: 10.1530/EC-16-0012
pubmed: 26902318
pmcid: 5002958
Isaksen JL, Skov MW, Graff C, Ellervik C, Kanters JK. Electrocardiography in euthyroid individuals: a Danish general population study. Minerva Endocrinol 2020 Jul 23. https://doi.org/10.23736/S0391-1977.20.03170-3
Tayal B, Graff C, Selmer C, et al. Thyroid dysfunction and electrocardiographic changes in subjects without arrhythmias: A cross-sectional study of primary healthcare subjects from Copenhagen. BMJ Open. 2019;9(6):1–10. https://doi.org/10.1136/bmjopen-2018-023854 .
doi: 10.1136/bmjopen-2018-023854
Chen JL, Chiu HW, Tseng YJ, Chu WC. Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: Evidence from spectral analysis of heart rate variability. Clin Endocrinol (Oxf). 2006;64(6):611–6. https://doi.org/10.1111/j.1365-2265.2006.02514.x .
doi: 10.1111/j.1365-2265.2006.02514.x
Burggraaf J, Tulen JHM, Lalezari S, et al. Sympathovagal imbalance in hyperthyroidism. Am J Physiol Metab. 2001;281(1):E190–5. https://doi.org/10.1152/ajpendo.2001.281.1.E190 .
doi: 10.1152/ajpendo.2001.281.1.E190
Selmer C, Hansen ML, Olesen JB, et al. New-Onset Atrial Fibrillation Is a Predictor of Subsequent Hyperthyroidism: A Nationwide Cohort Study. PLoS One. 2013;8(2). https://doi.org/10.1371/journal.pone.0057893
Krahn AD, Klein GJ, Kerr CR, et al. How useful is thyroid function testing in patients with recent-onset atrial fibrillation? Arch Intern Med. 1996;156(19):2221–4. https://doi.org/10.1001/archinte.156.19.2221 .
doi: 10.1001/archinte.156.19.2221
pubmed: 8885821
Heeringa J, Hoogendoorn EH, van der Deure WM, et al. High-Normal Thyroid Function and Risk of Atrial Fibrillation. Arch Intern Med. 2008;168(20):2219. https://doi.org/10.1001/archinte.168.20.2219 .
doi: 10.1001/archinte.168.20.2219
pubmed: 19001198
Zych J, Guerriaud M, Michiels Y. Amiodarone and thyroid dysfunction. Actual Pharm. 2019;58(591):46–8. https://doi.org/10.1016/j.actpha.2019.10.012 .
doi: 10.1016/j.actpha.2019.10.012
Batcher EL, Tang XC, Singh BN, Singh SN, Reda DJ, Hershman JM. Thyroid Function Abnormalities during Amiodarone Therapy for Persistent Atrial Fibrillation. Am J Med. 2007;120(10):880–5. https://doi.org/10.1016/j.amjmed.2007.04.022 .
doi: 10.1016/j.amjmed.2007.04.022
pubmed: 17904459
Lewandowski K. Reference ranges for TSH and thyroid hormones. Thyroid Res. 2015;8(Suppl 1):A17. https://doi.org/10.1186/1756-6614-8-s1-a17 .
doi: 10.1186/1756-6614-8-s1-a17
pmcid: 4480274
Shimizu T, Koide S, Noh JY, Sugino K, Ito K, Nakazawa H. Hyperthyroidism and the management of atrial fibrillation. Thyroid. 2002;12(6):489–93. https://doi.org/10.1089/105072502760143863 .
doi: 10.1089/105072502760143863
pubmed: 12165111
Bahn RS, Burch HB, Cooper DS, et al. Hyperthyroidism and other causes of thyrotoxicosis: Management guidelines of the american thyroid association and American association of clinical endocrinoloigists. Endocr Pract. 2011;17(3):456–520. https://doi.org/10.4158/EP.17.3.456 .
doi: 10.4158/EP.17.3.456
pubmed: 21700562
Sivanandy P, Mey LC. Management of thyrotoxicosis with atrial fibrillation - A case report. J Young Pharm. 2017;9(4):616–9. https://doi.org/10.5530/jyp.2017.9.117 .
doi: 10.5530/jyp.2017.9.117
Burr WA, Griffiths RS, Ramsden DB, et al. Effect of a single dose of dexamethasone on serum concentrations of thyroid hormones. Lancet. 1976;308(7976):58–61. https://doi.org/10.1016/S0140-6736(76)92283-2 .
doi: 10.1016/S0140-6736(76)92283-2
Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612 .
doi: 10.1093/eurheartj/ehaa612
pubmed: 32860505
De Souza MVL, Duarte MMT, Coeli CM, Vaisman M. Atrial fibrillation and hyperthyroidism: Relation between transoesophageal markers of a thrombogenic milieu and clinical risk factors for thromboembolism. Clin Endocrinol (Oxf). 2012;76(3):448–53. https://doi.org/10.1111/j.1365-2265.2011.04232.x .
doi: 10.1111/j.1365-2265.2011.04232.x
Friberg L, Rosenqvist M, Lip GYH. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: The Swedish Atrial Fibrillation cohort study. Eur Heart J. 2012;33(12):1500–10. https://doi.org/10.1093/eurheartj/ehr488 .
doi: 10.1093/eurheartj/ehr488
pubmed: 22246443
Gorenek B, Boriani G, Dan GA, et al. European Heart Rhythm Association (EHRA) position paper on arrhythmia management and device therapies in endocrine disorders, endorsed by Asia Pacific Heart Rhythm Society (APHRS) and Latin American Heart Rhythm Society (LAHRS). Europace. 2018;20(6):895–6. https://doi.org/10.1093/europace/euy051 .
doi: 10.1093/europace/euy051
pubmed: 29566135
Naccarelli GV, Dell’Orfano JT, Wolbrette DL, Patel HM, Luck JC. Cost-effective management of acute atrial fibrillation: role of rate control, spontaneous conversion, medical and direct current cardioversion, transesophageal echocardiography, and antiembolic therapy. Am J Cardiol. 2000;85(10):36–45. https://doi.org/10.1016/S0002-9149(00)00905-X .
doi: 10.1016/S0002-9149(00)00905-X
Shah AJ, Liu X, Jadidi AS, Haïssaguerre M. Early management of atrial fibrillation: From imaging to drugs to ablation. Nat Rev Cardiol. 2010;7(6):345–54. https://doi.org/10.1038/nrcardio.2010.49 .
doi: 10.1038/nrcardio.2010.49
pubmed: 20421888
Ma CS, Liu X, Hu FL, et al. Catheter ablation of atrial fibrillation in patients with hyperthyroidism. J Interv Card Electrophysiol. 2007;18(2):137–42. https://doi.org/10.1007/s10840-007-9088-y .
doi: 10.1007/s10840-007-9088-y
pubmed: 17447127
Siu CW, Jim MH, Zhang X, et al. Comparison of Atrial Fibrillation Recurrence Rates After Successful Electrical Cardioversion in Patients With Hyperthyroidism-Induced Versus Non-Hyperthyroidism-Induced Persistent Atrial Fibrillation. Am J Cardiol. 2009;103(4):540–3. https://doi.org/10.1016/j.amjcard.2008.10.019 .
doi: 10.1016/j.amjcard.2008.10.019
pubmed: 19195517
Wongcharoen W, Lin Y-J, Chang S-L, et al. History of hyperthyroidism and long-term outcome of catheter ablation of drug-refractory atrial fibrillation. Heart Rhythm. 2015;12(9):1956–62. https://doi.org/10.1016/j.hrthm.2015.06.004 .
Nakazawa H, Lythall DA, Noh J, et al. Is there a place for the late cardioversion of atrial fibrillation? A long-term follow-up study of patients with post-thyrotoxic atrial fibrillation. Eur Heart J. 2000;21(4):327–33. https://doi.org/10.1053/euhj.1999.1956 .
doi: 10.1053/euhj.1999.1956
pubmed: 10653681