Membrane adaptation in the hyperthermophilic archaeon Pyrococcus furiosus relies upon a novel strategy involving glycerol monoalkyl glycerol tetraether lipids.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
revised:
21
01
2022
received:
21
03
2021
accepted:
24
01
2022
pubmed:
3
2
2022
medline:
30
4
2022
entrez:
2
2
2022
Statut:
ppublish
Résumé
Microbes preserve membrane functionality under fluctuating environmental conditions by modulating their membrane lipid composition. Although several studies have documented membrane adaptations in Archaea, the influence of most biotic and abiotic factors on archaeal lipid compositions remains underexplored. Here, we studied the influence of temperature, pH, salinity, the presence/absence of elemental sulfur, the carbon source and the genetic background on the lipid core composition of the hyperthermophilic neutrophilic marine archaeon Pyrococcus furiosus. Every growth parameter tested affected the lipid core composition to some extent, the carbon source and the genetic background having the greatest influence. Surprisingly, P. furiosus appeared to only marginally rely on the two major responses implemented by Archaea, i.e. the regulation of the ratio of diether to tetraether lipids and that of the number of cyclopentane rings in tetraethers. Instead, this species increased the ratio of glycerol monoalkyl glycerol tetraethers (GMGT, aka. H-shaped tetraethers) to glycerol dialkyl glycerol tetraethers in response to decreasing temperature and pH and increasing salinity, thus providing for the first time evidence of adaptive functions for GMGT. Besides P. furiosus, numerous other species synthesize significant proportions of GMGT, which suggests that this unprecedented adaptive strategy might be common in Archaea.
Identifiants
pubmed: 35106897
doi: 10.1111/1462-2920.15923
doi:
Substances chimiques
Membrane Lipids
0
Carbon
7440-44-0
Glycerol
PDC6A3C0OX
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2029-2046Informations de copyright
© 2022 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Arakawa, K., Eguchi, T., and Kakinuma, K. (2001) 36-membered macrocyclic diether lipid is advantageous for archaea to thrive under the extreme thermal environments. Bull Chem Soc Jpn 74: 347-356.
Baba, T., Toshima, Y., Minamikawa, H., Hato, M., Suzuki, K., and Kamo, N. (1999) Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochim Biophys Acta - Biomembr 1421: 91-102.
Bale, N.J., Palatinszky, M., Rijpstra, W.I.C., Herbold, C.W., Wagner, M., and Sinninghe Damsté, J.S. (2019) Membrane lipid composition of the moderately thermophilic ammonia-oxidizing archaeon Candidatus “Nitrosotenuis uzonensis” at different growth temperatures. Appl Environ Microbiol 85: e01332-19.
Bauersachs, T., Weidenbach, K., Schmitz, R.A., and Schwark, L. (2015) Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic archaea. Org Geochem 83-84: 101-108.
Baumann, L.M.F., Taubner, R.-S., Bauersachs, T., Steiner, M., Schleper, C., Peckmann, J., et al. (2018) Intact polar lipid and core lipid inventory of the hydrothermal vent methanogens Methanocaldococcus villosus and Methanothermococcus okinawensis. Org Geochem 126: 33-42.
Becker, K.W., Elling, F.J., Yoshinaga, M.Y., Söllinger, A., Urich, T., and Hinrichs, K.-U. (2016) Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens. Appl Environ Microbiol 82: 4505-4516.
Birrien, J.-L., Zeng, X., Jebbar, M., Cambon-Bonavita, M.-A., Quérellou, J., Oger, P., et al. (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61: 2827-2881.
Bischof, L.F., Haurat, M.F., Hoffmann, L., Albersmeier, A., Wolf, J., Neu, A., et al. (2019) Early response of Sulfolobus acidocaldarius to nutrient limitation. Front Microbiol 9: 1-17.
Boyd, E.S., Hamilton, T.L., Wang, J., He, L., and Zhang, C.L. (2013) The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Front Microbiol 4: 62.
Boyd, E.S., Pearson, A., Pi, Y., Li, W.-J., Zhang, Y.G., He, L., et al. (2011) Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens. Extremophiles 15: 59-65.
Bridger, S.L., Lancaster, W.A., Poole, F.L., Schut, G.J., and Adams, M.W.W. (2012) Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome. J Bacteriol 194: 4097-4106.
Cario, A., Grossi, V., Schaeffer, P., and Oger, P.M. (2015) Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Front Microbiol 6: 1-12.
Chong, P.L.-G. (2010) Archaebacterial bipolar tetraether lipids: physico-chemical and membrane properties. Chem Phys Lipids 163: 253-265.
Chou, C.-J., Shockley, K.R., Conners, S.B., Lewis, D.L., Comfort, D.A., Adams, M.W.W., and Kelly, R.M. (2007) Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 73: 6842-6853.
Comita, P.B., Gagosian, R.B., Pang, H., and Costello, C.E. (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem 259: 15234-15241.
Cossu, M., Badel, C., Catchpole, R., Gadelle, D., Marguet, E., Barbe, V., et al. (2017) Flipping chromosomes in deep-sea archaea. PLoS Genet 13: e1006847.
Cossu, M., Da Cunha, V., Toffano-Nioche, C., Forterre, P., and Oberto, J. (2015) Comparative genomics reveals conserved positioning of essential genomic clusters in highly rearranged Thermococcales chromosomes. Biochimie 118: 313-321.
Dannenmuller, O., Arakawa, K., Eguchi, T., Kakinuma, K., Blanc, S., Albrecht, A.-M., et al. (2000) Membrane properties of archaeal macrocyclic diether phospholipids. Chemistry 6: 645-654.
Dawson, K.S., Freeman, K.H., and Macalady, J.L. (2012) Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org Geochem 48: 1-8.
De Rosa, M., and Gambacorta, A. (1988) The lipids of archaebacteria. Prog Lipid Res 27: 153-175.
De Rosa, M., Gambacorta, A., and Gliozzi, A. (1986) Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev 50: 70-80.
De Rosa, M., Gambacorta, A., Nicolaus, B., Chappe, B., and Albrecht, P. (1983) Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta - Lipids Lipid Metab 753: 249-256.
Elling, F.J., Könneke, M., Lipp, J.S., Becker, K.W., Gagen, E.J., and Hinrichs, K.-U. (2014) Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochim Cosmochim Acta 141: 579-597.
Elling, F.J., Könneke, M., Mußmann, M., Greve, A., and Hinrichs, K.-U. (2015) Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates. Geochim Cosmochim Acta 171: 238-255.
Elling, F.J., Könneke, M., Nicol, G.W., Stieglmeier, M., Bayer, B., Spieck, E., et al. (2017) Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol 19: 2681-2700.
Ernst, R., Ejsing, C.S., and Antonny, B. (2016) Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol 428: 4776-4791.
Farkas, J., Stirrett, K., Lipscomb, G.L., Nixon, W., Scott, R.A., Adams, M.W.W., and Westpheling, J. (2012) Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants. Appl Environ Microbiol 78: 4669-4676.
Feyhl-Buska, J., Chen, Y., Jia, C., Wang, J.-X., Zhang, C.L., and Boyd, E.S. (2016) Influence of growth phase, pH, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Front Microbiol 7: 1323.
Fiala, G., and Stetter, K.O. (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145: 56-61.
Gabriel, J.L., and Chong, P.L.-G. (2000) Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids 105: 193-200.
Gambacorta, A., Trincone, A., Nicolaus, B., Lama, L., and De Rosa, M. (1993) Unique features of lipids of archaea. Syst Appl Microbiol 16: 518-527.
Gibson, J.A.E., Miller, M.R., Davies, N.W., Neill, G.P., Nichols, D.S., and Volkman, J.K. (2005) Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. Syst Appl Microbiol 28: 19-26.
Gliozzi, A., Paoli, G., De Rosa, M., and Gambacorta, A. (1983) Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta - Biomembr 735: 234-242.
Grossi, V., Yakimov, M.M., Al Ali, B., Tapilatu, Y., Cuny, P., Goutx, M., et al. (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12: 2020-2033.
Hurley, S.J., Elling, F.J., Könneke, M., Buchwald, C., Wankel, S.D., Santoro, A.E., et al. (2016) Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc Natl Acad Sci U S A 113: 7762-7767.
Jensen, S.M., Brandl, M., Treusch, A.H., and Ejsing, C.S. (2015a) Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics. J Mass Spectrom 50: 476-487.
Jensen, S.M., Neesgard, V., Skjoldbjerg, S., Brandl, M., Ejsing, C., and Treusch, A. (2015b) The effects of temperature and growth phase on the lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii. Life 5: 1539-1566.
Jia, C., Zhang, C.L., Xie, W., Wang, J.-X., Li, F., Wang, S., et al. (2014) Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs. Org Geochem 75: 109-121.
Kellermann, M.Y., Yoshinaga, M.Y., Valentine, R.C., Wörmer, L., and Valentine, D.L. (2016) Important roles for membrane lipids in haloarchaeal bioenergetics. Biochim Biophys Acta - Biomembr 1858: 2940-2956.
Knappy, C.S., Nunn, C.E.M., Morgan, H.W., and Keely, B.J. (2011) The major lipid cores of the archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids. Extremophiles 15: 517-528.
Koga, Y., Akagawa-Matsushita, M., Ohga, M., and Nishihara, M. (1993) Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Syst Appl Microbiol 16: 342-351.
Komatsu, H., and Chong, P.L.-G. (1998) Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry 37: 107-115.
Lai, D., Springstead, J.R., and Monbouquette, H.G. (2008) Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles 12: 271-278.
Langworthy, T.A. (1977) Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius. J Bacteriol 130: 1326-1332.
Lipscomb, G.L., Stirrett, K., Schut, G.J., Yang, F., Jenney, F.E., Scott, R.A., et al. (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77: 2232-2238.
Lobasso, S., Lopalco, P., Angelini, R., Vitale, R., Huber, H., Müller, V., and Corcelli, A. (2012) Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. Archaea 2012: 1-10.
Macalady, J.L., Vestling, M.M., Baumler, D., Boekelheide, N., Kaspar, C.W., and Banfield, J.F. (2004) Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8: 411-419.
Matsuno, Y., Sugai, A., Higashibata, H., Fukuda, W., Ueda, K., Uda, I., et al. (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 73: 104-108.
Meador, T.B., Gagen, E.J., Loscar, M.E., Goldhammer, T., Yoshinaga, M.Y., Wendt, J., et al. (2014) Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability. Front Microbiol 5: 1-13.
Morii, H., Eguchi, T., Nishihara, M., Kakinuma, K., König, H., and Koga, Y. (1998) A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochim Biophys Acta - Lipids Lipid Metab 1390: 339-345.
Naafs, B.D.A., McCormick, D., Inglis, G.N., and Pancost, R.D. (2018) Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature. Geochim Cosmochim Acta 227: 156-170.
Nichols, D.S., Miller, M.R., Davies, N.W., Goodchild, A., Raftery, M., and Cavicchioli, R. (2004) Cold adaptation in the Antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186: 8508-8515.
Quehenberger, J., Pittenauer, E., Allmaier, G., and Spadiut, O. (2020) The influence of the specific growth rate on the lipid composition of Sulfolobus acidocaldarius. Extremophiles 24: 413-420.
R Core Team. (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Rogers, K.L., Amend, J.P., and Gurrieri, S. (2007) Temporal changes in fluid chemistry and energy profiles in the Vulcano Island hydrothermal system. Astrobiology 7: 905-932.
Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., et al. (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177: 7050-7059.
Schouten, S., Baas, M., Hopmans, E.C., Reysenbach, A.-L., and Damsté, J.S.S. (2008a) Tetraether membrane lipids of Candidatus “Aciduliprofundum boonei”, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents. Extremophiles 12: 119-124.
Schouten, S., Hopmans, E.C., Baas, M., Boumann, H., Standfest, S., Könneke, M., et al. (2008b) Intact membrane lipids of Candidatus “Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota. Appl Environ Microbiol 74: 2433-2440.
Schouten, S., van der Meer, M.T.J., Hopmans, E.C., Rijpstra, W.I.C., Reysenbach, A.-L., Ward, D.M., and Sinninghe Damsté, J.S. (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl Environ Microbiol 73: 6181-6191.
Shimada, H., Nemoto, N., Shida, Y., Oshima, T., and Yamagishi, A. (2002) Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J Bacteriol 184: 556-563.
Shimada, H., Nemoto, N., Shida, Y., Oshima, T., and Yamagishi, A. (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190: 5404-5411.
Sprott, G.D., Agnew, B.J., and Patel, G.B. (1997) Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can J Microbiol 43: 467-476.
Sprott, G.D., Meloche, M., and Richards, J.C. (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173: 3907-3910.
Sugai, A., Uda, I., Itoh, Y.H., and Itoh, T. (2004) The core lipid composition of the 17 strains of hyperthermophilic archaea, Thermococcales. J Oleo Sci 53: 41-44.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., et al. (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105: 10949-10954.
Tenchov, B., Vescio, E.M., Sprott, G.D., Zeidel, M.L., and Mathai, J.C. (2006) Salt tolerance of archaeal extremely halophilic lipid membranes. J Biol Chem 281: 10016-10023.
Tourte, M., Kuentz, V., Schaeffer, P., Grossi, V., Cario, A., and Oger, P.M. (2020a) Novel intact polar and core lipid compositions in the Pyrococcus model species, P. furiosus and P. yayanosii, reveal the largest lipid diversity amongst Thermococcales. Biomolecules 10: 830.
Tourte, M., Schaeffer, P., Grossi, V., and Oger, P. (2021) Acid hydrolysis for the extraction of archaeal core lipids and HPLC-MS analysis. Bio-protocol 11: 1-10.
Tourte, M., Schaeffer, P., Grossi, V., and Oger, P.M. (2020b) Functionalized membrane domains: an ancestral feature of archaea? Front Microbiol 11: 526.
Uda, I., Sugai, A., Itoh, Y.H., and Itoh, T. (2004) Variation in molecular species of core lipids from the order Thermoplasmales strains depends on the growth temperature. J Oleo Sci 53: 399-404.
Vinçon-Laugier, A., Grossi, V., Pacton, M., Escarguel, G., and Cravo-Laureau, C. (2016) The alkyl glycerol ether lipid composition of heterotrophic sulfate reducing bacteria strongly depends on growth substrate. Org Geochem 98: 141-154.
Zeng, X., Birrien, J.-L., Fouquet, Y., Cherkashov, G., Jebbar, M., Querellou, J., et al. (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3: 873-876.
Zeng, Z., Liu, X.-L., Farley, K.R., Wei, J.H., Metcalf, W.W., Summons, R.E., and Welander, P.V. (2019) GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. Proc Natl Acad Sci U S A 116: 22505-22511.
Zhou, A., Weber, Y., Chiu, B.K., Elling, F.J., Cobban, A.B., Pearson, A., and Leavitt, W.D. (2020) Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius. Environ Microbiol 22: 343-353.
Zivanovic, Y. (2002) Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 30: 1902-1910.