Metastatic profiling of HER2-positive breast cancer cell lines in xenograft models.
Bone metastasis
HER2-positive breast cancer
In vivo imaging
Lung metastasis
Journal
Clinical & experimental metastasis
ISSN: 1573-7276
Titre abrégé: Clin Exp Metastasis
Pays: Netherlands
ID NLM: 8409970
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
21
10
2021
accepted:
24
01
2022
pubmed:
2
2
2022
medline:
21
5
2022
entrez:
1
2
2022
Statut:
ppublish
Résumé
Most studies on breast cancer metastasis have been performed using triple-negative breast cancer cells; thus, subtype-dependent metastatic ability of breast cancer is poorly understood. In this research, we performed intravenous injection (IVI) and intra-caudal arterial injections using nine human epidermal growth factor receptor-2 (HER2)-positive breast cancer cell lines for evaluating their metastatic abilities. Our results showed that MDA-MB-453, UACC-893, and HCC-202 had strong bone metastatic abilities, whereas HCC-2218 and HCC-1419 did not show bone metastasis. HER2-positive cell lines could hardly metastasize to the lung through IVI. From the genomic analysis, gene signatures were extracted according to the breast cancer subtypes and their metastatic preferences. The UACC-893 cell line was identified as a useful model for the metastasis study of HER2-positive breast cancer. Combined with our previous result on brain metastasis ability, we provide a characteristic metastasis profile of HER2-positive breast cancer cell lines in this study.
Identifiants
pubmed: 35103869
doi: 10.1007/s10585-022-10150-1
pii: 10.1007/s10585-022-10150-1
doi:
Substances chimiques
Receptor, ErbB-2
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
467-477Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Jemal A, Bray FMM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. https://doi.org/10.3322/caac.20107
doi: 10.3322/caac.20107
pubmed: 21296855
Liu K, Newbury PA, Glicksberg BS et al (2019) Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat Commun. https://doi.org/10.1038/s41467-019-10148-6
doi: 10.1038/s41467-019-10148-6
pubmed: 31863007
pmcid: 6925282
Jin X, Demere Z, Nair K et al (2020) A metastasis map of human cancer cell lines. Nature 588:331–336. https://doi.org/10.1038/s41586-020-2969-2
doi: 10.1038/s41586-020-2969-2
pubmed: 33299191
pmcid: 8439149
Moasser MM (2007) Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 26:6577–6592. https://doi.org/10.1038/sj.onc.1210478
doi: 10.1038/sj.onc.1210478
pubmed: 17486079
pmcid: 3071580
Gong Y, Liu YR, Ji P et al (2017) Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep. https://doi.org/10.1038/srep45411
doi: 10.1038/srep45411
pubmed: 29269863
pmcid: 5740147
Jiang H, Rugo HS (2015) Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer: how the latest results are improving therapeutic options. Ther Adv Med Oncol 7:321–339. https://doi.org/10.1177/1758834015599389
doi: 10.1177/1758834015599389
pubmed: 26557900
pmcid: 4622301
Asif HM, Sultana S, Ahmed S et al (2016) HER-2 positive breast cancer—A mini-review. Asian Pacific J Cancer Prev 17:1609–1615. https://doi.org/10.7314/APJCP.2016.17.4.1609
doi: 10.7314/APJCP.2016.17.4.1609
Nakayama J, Han Y, Kuroiwa Y et al (2021) The in vivo selection method in breast cancer metastasis. Int J Mol Sci 22:1–19. https://doi.org/10.3390/ijms22041886
doi: 10.3390/ijms22041886
Kuroiwa Y, Nakayama J, Adachi C et al (2020) Proliferative classification of intracranially injected HER2-positive breast cancer cell lines. Cancers (Basel). https://doi.org/10.3390/cancers12071811
doi: 10.3390/cancers12071811
Kuchimaru T, Kataoka N, Nakagawa K et al (2018) A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat Commun. https://doi.org/10.1038/s41467-018-05366-3
doi: 10.1038/s41467-018-05366-3
pubmed: 30061695
pmcid: 6065368
Han Y, Nakayama J, Hayashi Y et al (2020) Establishment and characterization of highly osteolytic luminal breast cancer cell lines by intracaudal arterial injection. Genes Cells 25:111–123. https://doi.org/10.1111/gtc.12743
doi: 10.1111/gtc.12743
pubmed: 31849141
Nakayama J, Ito E, Fujimoto J et al (2017) Comparative analysis of gene regulatory networks of highly metastatic breast cancer cells established by orthotopic transplantation and intra-circulation injection. Int J Oncol 50:497–504. https://doi.org/10.3892/ijo.2016.3809
doi: 10.3892/ijo.2016.3809
pubmed: 28000849
Ito E, Honma R, Yanagisawa Y et al (2007) Novel clusters of highly expressed genes accompany genomic amplification in breast cancers. FEBS Lett 581:3909–3914. https://doi.org/10.1016/j.febslet.2007.07.016
doi: 10.1016/j.febslet.2007.07.016
pubmed: 17662721
Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. https://doi.org/10.1038/s41467-019-09234-6
doi: 10.1038/s41467-019-09234-6
pubmed: 31857589
pmcid: 6923398
Murakami A, Maekawa M, Kawai K et al (2019) Cullin-3 / KCTD10 E3 complex is essential for Rac1 activation through RhoB degradation in human epidermal growth factor receptor 2- positive breast cancer cells. Cancer Sci 110:650–661. https://doi.org/10.1111/cas.13899
doi: 10.1111/cas.13899
pubmed: 30515933
pmcid: 6361568
Nishiyama K, Maekawa M, Nakagita T et al (2021) CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 4:e202101095
doi: 10.26508/lsa.202101095
Goldenberg DM, Stein R, Sharkey RM (2018) The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 9:28989–29006
doi: 10.18632/oncotarget.25615
Dalotto-Moreno T, Croci DO, Cerliani JP et al (2013) Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 73:1107–1117. https://doi.org/10.1158/0008-5472.CAN-12-2418
doi: 10.1158/0008-5472.CAN-12-2418
pubmed: 23204230
Escárcega RO, Fuentes-Alexandro S, García-Carrasco M et al (2007) The transcription factor nuclear factor-kappa b and cancer. Clin Oncol 19:154–161. https://doi.org/10.1016/j.clon.2006.11.013
doi: 10.1016/j.clon.2006.11.013
Li Q, Lai Q, He C et al (2019) RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-019-1330-9
doi: 10.1186/s13046-019-1330-9
pubmed: 31888685
pmcid: 6936093
Cleris D, Fina C (2019) The detection and morphological analysis of circulating tumor and host cells in breast cancer xenograft models. Cells 8:683. https://doi.org/10.3390/cells8070683
doi: 10.3390/cells8070683
pmcid: 6679018
Chen F, Liu X, Bai J et al (2016) The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep 35:1227–1236. https://doi.org/10.3892/or.2015.4515
doi: 10.3892/or.2015.4515
pubmed: 26708741
Manandhar S, Lee YM (2018) Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep 51:174–181. https://doi.org/10.5483/BMBRep.2018.51.4.033
doi: 10.5483/BMBRep.2018.51.4.033
pubmed: 29429451
pmcid: 5933212
Park J, Kim HJ, Kim KR et al (2017) Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma. Oncotarget 8:9079–9092
doi: 10.18632/oncotarget.14071
Barkovskaya A, Buffone A, Žídek M, Weaver VM (2020) Proteoglycans as mediators of cancer tissue mechanics. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.569377
doi: 10.3389/fcell.2020.569377
pubmed: 33330449
pmcid: 7734320
Fjeldstad K, Kolset SO (2005) Decreasing the metastatic potential in cancers–targeting the heparan sulfate proteoglycans. Curr Drug Targets 6:665–682. https://doi.org/10.2174/1389450054863662
doi: 10.2174/1389450054863662
pubmed: 16178800
Quinn JJ, Jones MG, Okimoto RA et al (2021) Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371:1–21
doi: 10.1126/science.abc1944
Chen Y, Qian B, Sun X et al (2021) Sox9/INHBB axis-mediated crosstalk between the hepatoma and hepatic stellate cells promotes the metastasis of hepatocellular carcinoma. Cancer Lett 499:243–254. https://doi.org/10.1016/j.canlet.2020.11.025
doi: 10.1016/j.canlet.2020.11.025
pubmed: 33246092
Chen X, Cao Q, Liao R et al (2019) Loss of ABAT-mediated GABAergic system promotes basal-like breast cancer progression by activating Ca2+-NFAT1 axis. Theranostics 9:34–47. https://doi.org/10.7150/thno.29407
doi: 10.7150/thno.29407
pubmed: 30662552
pmcid: 6332792
Jansen MPHM, Sas L, Sieuwerts AM et al (2015) Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease. Mol Oncol 9:1218–1233. https://doi.org/10.1016/j.molonc.2015.02.006
doi: 10.1016/j.molonc.2015.02.006
pubmed: 25771305
pmcid: 5528763