Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column.
P sequestration
electron microscopy
intracellular inclusions
magnetosomes
magnetotactic bacteria (MTB)
morphotype diversity
polyphosphates (PolyP)
redox and chemical gradients
Journal
Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977
Informations de publication
Date de publication:
2021
2021
Historique:
received:
04
10
2021
accepted:
19
11
2021
entrez:
27
1
2022
pubmed:
28
1
2022
medline:
28
1
2022
Statut:
epublish
Résumé
Magnetotactic bacteria (MTB) are microorganisms thriving mostly at oxic-anoxic boundaries of aquatic habitats. MTB are efficient in biomineralising or sequestering diverse elements intracellularly, which makes them potentially important actors in biogeochemical cycles. Lake Pavin is a unique aqueous system populated by a wide diversity of MTB with two communities harbouring the capability to sequester not only iron under the form of magnetosomes but also phosphorus and magnesium under the form of polyphosphates, or calcium carbonates, respectively. MTB thrive in the water column of Lake Pavin over a few metres along strong redox and chemical gradients representing a series of different microenvironments. In this study, we investigate the relative abundance and the vertical stratification of the diverse populations of MTB in relation to environmental parameters, by using a new method coupling a precise sampling for geochemical analyses, MTB morphotype description, and
Identifiants
pubmed: 35082768
doi: 10.3389/fmicb.2021.789134
pmc: PMC8786505
doi:
Types de publication
Journal Article
Langues
eng
Pagination
789134Informations de copyright
Copyright © 2022 Bidaud, Monteil, Menguy, Busigny, Jézéquel, Viollier, Travert, Skouri-Panet, Benzerara, Lefevre and Duprat.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Biochim Biophys Acta. 2002 Sep 27;1577(3):355-76
pubmed: 12359326
Trends Microbiol. 2021 Nov;29(11):1013-1023
pubmed: 33632603
Nat Commun. 2014 Nov 14;5:5398
pubmed: 25394370
PLoS One. 2019 Feb 22;14(2):e0212787
pubmed: 30794698
Environ Sci Technol. 2013 Jan 15;47(2):741-9
pubmed: 23240551
Environ Microbiol. 2014 Sep;16(9):2646-58
pubmed: 24148107
Geobiology. 2021 Mar;19(2):199-213
pubmed: 33347698
Front Microbiol. 2018 Apr 24;9:782
pubmed: 29755430
Nat Commun. 2014 Sep 01;5:4797
pubmed: 25175931
Environ Microbiol. 2017 Mar;19(3):1103-1119
pubmed: 27902881
ISME J. 2019 May;13(5):1198-1208
pubmed: 30643197
Environ Sci Technol. 2016 Nov 1;50(21):11654-11662
pubmed: 27712057
Science. 1999 Apr 16;284(5413):493-5
pubmed: 10205058
Plant Physiol. 1978 Jul;62(1):120-6
pubmed: 16660449
PLoS One. 2014 Sep 18;9(9):e107356
pubmed: 25233081
Appl Environ Microbiol. 2020 Oct 28;86(22):
pubmed: 32887716
Syst Appl Microbiol. 2017 Jul;40(5):280-289
pubmed: 28622795
PLoS Biol. 2007 Sep;5(9):e230
pubmed: 17760503
Appl Environ Microbiol. 2001 Dec;67(12):5530-7
pubmed: 11722903
Nat Biotechnol. 2018 Nov;36(10):996-1004
pubmed: 30148503
DNA Res. 2012 Oct;19(5):383-94
pubmed: 22923697
Biophys J. 2015 Mar 10;108(5):1268-74
pubmed: 25762338
Appl Environ Microbiol. 1996 Mar;62(3):954-8
pubmed: 16535282
Rev Physiol Biochem Pharmacol. 1975;73:131-58
pubmed: 175427
ISME J. 2016 Dec;10(12):2931-2945
pubmed: 27128993
Front Microbiol. 2012 Jul 05;3:241
pubmed: 22783245
Appl Environ Microbiol. 2008 Oct;74(19):5867-74
pubmed: 18708516
Microbiology (Reading). 1996 Sep;142 ( Pt 9):2341-54
pubmed: 8828202
Microb Cell Fact. 2011 Aug 04;10:63
pubmed: 21816086
Arch Microbiol. 2004 Nov;182(5):373-87
pubmed: 15338111
PLoS One. 2014 Jul 01;9(7):e101150
pubmed: 24983865
J Mol Microbiol Biotechnol. 2013;23(4-5):270-80
pubmed: 23920490
Microbiol Mol Biol Rev. 2013 Sep;77(3):497-526
pubmed: 24006473
Nat Rev Microbiol. 2016 Sep 13;14(10):621-37
pubmed: 27620945
Environ Microbiol. 2021 Mar 9;:
pubmed: 33687779
J Mol Microbiol Biotechnol. 1999 Aug;1(1):79-86
pubmed: 10941788
Environ Microbiol Rep. 2018 Aug;10(4):465-474
pubmed: 29573371
ISME J. 2018 Jun;12(6):1508-1519
pubmed: 29581530
ISME J. 2012 Feb;6(2):440-50
pubmed: 21776027
J Bacteriol. 1991 Oct;173(20):6484-8
pubmed: 1655714
ISME J. 2019 Feb;13(2):482-493
pubmed: 30291329
Environ Microbiol. 2018 Dec;20(12):4415-4430
pubmed: 30043533
Antonie Van Leeuwenhoek. 2012 Feb;101(2):347-57
pubmed: 21909788
Int J Syst Evol Microbiol. 2013 Mar;63(Pt 3):801-808
pubmed: 22581902
Front Microbiol. 2019 Oct 02;10:2290
pubmed: 31632385
Biophys J. 1997 Aug;73(2):994-1000
pubmed: 9251816
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1699-703
pubmed: 25624469
ISME J. 2011 Mar;5(3):497-506
pubmed: 20827290
Mol Cell. 2014 Mar 6;53(5):685-7
pubmed: 24606917
Science. 2005 Jan 21;307(5708):416-8
pubmed: 15662012
Environ Microbiol. 2019 Feb;21(2):572-583
pubmed: 30474918
Appl Environ Microbiol. 2021 Nov 10;87(23):e0155621
pubmed: 34756060
Science. 2012 Apr 27;336(6080):459-62
pubmed: 22539718
Appl Environ Microbiol. 2005 Nov;71(11):7389-400
pubmed: 16269781
Int Microbiol. 2002 Dec;5(4):209-14
pubmed: 12497187
Annu Rev Biochem. 1999;68:89-125
pubmed: 10872445
ISME J. 2015 Nov;9(11):2503-14
pubmed: 25909974
Biol Cell. 2002 Sep;94(4-5):243-9
pubmed: 12489693
ISME J. 2013 Mar;7(3):543-54
pubmed: 23178666
J Bacteriol. 1995 Feb;177(3):491-6
pubmed: 7836277
Environ Microbiol. 2021 Feb;23(2):1115-1129
pubmed: 32985765
Environ Microbiol. 2021 Jun;23(6):2834-2857
pubmed: 33000514
BMC Microbiol. 2010 Jan 12;10:7
pubmed: 20067623
Biophys J. 2014 Jul 15;107(2):527-538
pubmed: 25028894
Front Microbiol. 2017 May 30;8:969
pubmed: 28611762
Geobiology. 2018 Nov;16(6):640-658
pubmed: 30062734
ISME J. 2021 Jan;15(1):1-18
pubmed: 32839547