Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: what do they have in common?
Antibiotic resistance
Clinical
Comparative genomics
Klebsiella pneumoniae
Wastewater
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
22 Jan 2022
22 Jan 2022
Historique:
received:
08
09
2021
accepted:
22
12
2021
entrez:
23
1
2022
pubmed:
24
1
2022
medline:
27
1
2022
Statut:
epublish
Résumé
Klebsiella pneumoniae are ubiquitous bacteria and recognized multidrug-resistant opportunistic pathogens that can be released into the environment, mainly through sewage, where they can survive even after wastewater treatment. A major question is if once released into wastewater, the selection of lineages missing clinically-relevant traits may occur. Wastewater (n = 25) and clinical (n = 34) 3 Clinical and wastewater isolates were indistinguishable based on phenotypic and genotypic characterization. The analysis of whole genome sequences of 22 isolates showed that antibiotic and metal resistance or virulence genes, were associated with mobile genetic elements, mostly transposons, insertion sequences or integrative and conjugative elements. These features were variable among isolates, according to the respective genetic lineage rather than the origin. It is suggested that once acquired, clinically relevant features of K. pneumoniae may be preserved in wastewater, even after treatment. This evidence highlights the high capacity of K. pneumoniae for spreading through wastewater, enhancing the risks of transmission back to humans.
Sections du résumé
BACKGROUND
BACKGROUND
Klebsiella pneumoniae are ubiquitous bacteria and recognized multidrug-resistant opportunistic pathogens that can be released into the environment, mainly through sewage, where they can survive even after wastewater treatment. A major question is if once released into wastewater, the selection of lineages missing clinically-relevant traits may occur. Wastewater (n = 25) and clinical (n = 34) 3
RESULTS
RESULTS
Clinical and wastewater isolates were indistinguishable based on phenotypic and genotypic characterization. The analysis of whole genome sequences of 22 isolates showed that antibiotic and metal resistance or virulence genes, were associated with mobile genetic elements, mostly transposons, insertion sequences or integrative and conjugative elements. These features were variable among isolates, according to the respective genetic lineage rather than the origin.
CONCLUSIONS
CONCLUSIONS
It is suggested that once acquired, clinically relevant features of K. pneumoniae may be preserved in wastewater, even after treatment. This evidence highlights the high capacity of K. pneumoniae for spreading through wastewater, enhancing the risks of transmission back to humans.
Identifiants
pubmed: 35065607
doi: 10.1186/s12864-021-08279-6
pii: 10.1186/s12864-021-08279-6
pmc: PMC8783465
doi:
Substances chimiques
Anti-Bacterial Agents
0
Cephalosporins
0
Waste Water
0
beta-Lactamases
EC 3.5.2.6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
72Informations de copyright
© 2022. The Author(s).
Références
BMC Infect Dis. 2019 Nov 4;19(1):928
pubmed: 31684890
Virulence. 2013 Jul 1;4(5):419-28
pubmed: 23652836
J Antimicrob Chemother. 2012 Nov;67(11):2640-4
pubmed: 22782487
Int J Environ Res Public Health. 2016 Apr 15;13(4):426
pubmed: 27092516
Curr Opin Microbiol. 2018 Oct;45:131-139
pubmed: 29723841
Sci Rep. 2020 Jan 27;10(1):1232
pubmed: 31988374
Clin Microbiol Rev. 2013 Apr;26(2):185-230
pubmed: 23554414
Microbiology (Reading). 2010 Apr;156(Pt 4):1084-1096
pubmed: 20019083
J Microbiol Methods. 2005 Dec;63(3):219-28
pubmed: 15935499
Microb Drug Resist. 2020 Aug;26(8):924-933
pubmed: 32155384
Infect Immun. 2012 Aug;80(8):2780-90
pubmed: 22645286
FEMS Microbiol Lett. 2006 Jan;254(1):1-11
pubmed: 16451172
Euro Surveill. 2015 Apr 30;20(17):
pubmed: 25955775
FEMS Microbiol Ecol. 2018 May 1;94(5):
pubmed: 29659796
Antibiotics (Basel). 2020 May 17;9(5):
pubmed: 32429555
FEMS Microbiol Rev. 2017 May 1;41(3):252-275
pubmed: 28521338
Microorganisms. 2020 Nov 30;8(12):
pubmed: 33266320
Appl Environ Microbiol. 2013 Dec;79(24):7696-701
pubmed: 24096415
J Microbiol Methods. 2000 Apr;40(2):175-9
pubmed: 10699673
Clin Microbiol Infect. 2011 Jul;17(7):1032-6
pubmed: 20673270
Genes (Basel). 2020 Oct 22;11(11):
pubmed: 33105635
Genome Med. 2017 Jan 24;9(1):6
pubmed: 28118859
Clin Microbiol Rev. 1998 Oct;11(4):589-603
pubmed: 9767057
J Glob Antimicrob Resist. 2017 Sep;10:148-153
pubmed: 28732788
Chemosphere. 2019 Apr;220:748-759
pubmed: 30611073
Sci Total Environ. 2013 Mar 1;447:345-60
pubmed: 23396083
Front Cell Infect Microbiol. 2018 Jan 22;8:4
pubmed: 29404282
J Clin Microbiol. 2005 Aug;43(8):4178-82
pubmed: 16081970
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3574-81
pubmed: 26100894
J Antimicrob Chemother. 2019 Mar 1;74(3):594-602
pubmed: 30535393
Virulence. 2016 Apr 2;7(3):214-29
pubmed: 26730990
Expert Rev Anti Infect Ther. 2013 Mar;11(3):297-308
pubmed: 23458769
Appl Environ Microbiol. 2020 Jan 7;86(2):
pubmed: 31704681
Infect Control. 1985 Feb;6(2):52-8
pubmed: 3882590
Infect Immun. 2009 Dec;77(12):5449-57
pubmed: 19786563
Front Microbiol. 2019 Jul 18;10:1657
pubmed: 31379799
Trop Med Infect Dis. 2020 Feb 25;5(1):
pubmed: 32106595
PLoS One. 2021 Feb 26;16(2):e0247058
pubmed: 33635888
Emerg Infect Dis. 2014 Nov;20(11):1812-20
pubmed: 25341126
Sci Rep. 2020 Oct 8;10(1):16778
pubmed: 33033293
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
FEMS Microbiol Rev. 2014 Jul;38(4):761-78
pubmed: 24484530
PLoS One. 2010 Jan 06;5(1):e8601
pubmed: 20066042
Trends Microbiol. 2016 Dec;24(12):944-956
pubmed: 27742466
Restor Dent Endod. 2017 May;42(2):152-155
pubmed: 28503482
Antimicrob Agents Chemother. 2018 Dec 21;63(1):
pubmed: 30323046
Appl Microbiol Biotechnol. 2016 Feb;100(4):1543-1557
pubmed: 26649735
mSphere. 2021 Jan 13;6(1):
pubmed: 33441403
Front Microbiol. 2016 Jun 28;7:1000
pubmed: 27446040
Microb Drug Resist. 2017 Dec;23(8):1013-1018
pubmed: 28375698
BMC Biol. 2014 May 29;12:41
pubmed: 24885329
Nat Rev Microbiol. 2020 Jun;18(6):344-359
pubmed: 32055025
Microbiol Mol Biol Rev. 2016 Jun 15;80(3):629-61
pubmed: 27307579
J Appl Microbiol. 2016 Jun;120(6):1509-19
pubmed: 27012860
PLoS One. 2018 Jul 17;13(7):e0200093
pubmed: 30016317
Nat Commun. 2018 Jul 13;9(1):2703
pubmed: 30006589
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063