Discovery and characterization of sweetpotato's closest tetraploid relative.
Ipomoea aequatoriensis
Ecuador
crop wild relatives
genomics
herbarium specimens
new species
tetraploid
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
23
11
2021
accepted:
16
01
2022
pubmed:
23
1
2022
medline:
21
4
2022
entrez:
22
1
2022
Statut:
ppublish
Résumé
The origin of sweetpotato, a hexaploid species, is poorly understood, partly because the identity of its tetraploid progenitor remains unknown. In this study, we identify, describe and characterize a new species of Ipomoea that is sweetpotato's closest tetraploid relative known to date and probably a direct descendant of its tetraploid progenitor. We integrate morphological, phylogenetic, and genomic analyses of herbarium and germplasm accessions of the hexaploid sweetpotato, its closest known diploid relative Ipomoea trifida, and various tetraploid plants closely related to them from across the American continent. We identify wild autotetraploid plants from Ecuador that are morphologically distinct from Ipomoea batatas and I. trifida, but monophyletic and sister to I. batatas in phylogenetic analysis of nuclear data. We describe this new species as Ipomoea aequatoriensis T. Wells & P. Muñoz sp. nov., distinguish it from hybrid tetraploid material collected in Mexico; and show that it likely played a direct role in the origin of sweetpotato's hexaploid genome. This discovery transforms our understanding of sweetpotato's origin.
Identifiants
pubmed: 35064679
doi: 10.1111/nph.17991
pmc: PMC9306577
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1185-1194Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : T001445/1
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Références
Mol Biol Evol. 1999 Jan;16(1):37-48
pubmed: 10331250
Curr Biol. 2018 Apr 23;28(8):1246-1256.e12
pubmed: 29657119
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Gigascience. 2015 Feb 25;4:7
pubmed: 25722852
Plant Cell Rep. 2019 Nov;38(11):1365-1371
pubmed: 31468128
Plant Sci. 2006 Sep;171(3):424-33
pubmed: 22980213
PeerJ. 2016 Jan 28;4:e1660
pubmed: 26835189
Nat Commun. 2020 Mar 18;11(1):1432
pubmed: 32188846
Bioinformatics. 2011 Aug 1;27(15):2156-8
pubmed: 21653522
PhytoKeys. 2020 Mar 16;143:1-823
pubmed: 32577084
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
PLoS One. 2013 May 27;8(5):e62707
pubmed: 23723970
Nat Plants. 2017 Sep;3(9):696-703
pubmed: 28827752
Theor Appl Genet. 1991 Dec;83(2):159-63
pubmed: 24202352
Bioinformatics. 2011 Mar 15;27(6):764-70
pubmed: 21217122
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Bioinformatics. 2020 Aug 15;36(16):4449-4457
pubmed: 32415959
BMC Bioinformatics. 2018 May 8;19(Suppl 6):153
pubmed: 29745866
Syst Biol. 2007 Aug;56(4):564-77
pubmed: 17654362
Mol Biol Evol. 2000 Apr;17(4):540-52
pubmed: 10742046
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Genome Biol. 2020 Sep 10;21(1):241
pubmed: 32912315
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Plants. 2019 Nov;5(11):1136-1144
pubmed: 31712754
Gigascience. 2021 Feb 16;10(2):
pubmed: 33590861
Theor Appl Genet. 1970 Jan;40(8):360-6
pubmed: 24435948