An Arithmetic-Trigonometric Optimization Algorithm with Application for Control of Real-Time Pressure Process Plant.

PID control arithmetic–trigonometric optimization benchmark functions dead-time processes fractional-order controller process control trigonometric functions

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
13 Jan 2022
Historique:
received: 05 12 2021
revised: 31 12 2021
accepted: 06 01 2022
entrez: 22 1 2022
pubmed: 23 1 2022
medline: 27 1 2022
Statut: epublish

Résumé

This paper proposes a novel hybrid arithmetic-trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms.

Identifiants

pubmed: 35062578
pii: s22020617
doi: 10.3390/s22020617
pmc: PMC8781630
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Yayasan Universiti Teknologi PETRONAS
ID : YUTP 015LC0-045
Organisme : Ajman University's Internal Research Grant
ID : 2021-IRG-ENIT-1

Références

Entropy (Basel). 2021 Sep 09;23(9):
pubmed: 34573818
Sensors (Basel). 2021 Jul 21;21(15):
pubmed: 34372210
Math Biosci Eng. 2021 Nov 16;19(1):473-512
pubmed: 34903000
Sensors (Basel). 2021 May 23;21(11):
pubmed: 34070963
Sensors (Basel). 2021 Nov 13;21(22):
pubmed: 34833621
Sensors (Basel). 2020 Apr 10;20(7):
pubmed: 32290193
Sensors (Basel). 2013 Dec 24;14(1):299-345
pubmed: 24368702

Auteurs

P Arun Mozhi Devan (PAM)

Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

Fawnizu Azmadi Hussin (FA)

Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

Rosdiazli B Ibrahim (RB)

Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

Kishore Bingi (K)

School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.

M Nagarajapandian (M)

Department of Electronics and Instrumentation Engineering, Sri Ramakrishna Engineering College, Coimbatore 641022, Tamil Nadu, India.

Maher Assaad (M)

Department of Electrical and Computer Engineering, Ajman University, Ajman 666688, United Arab Emirates.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Algorithms Software Artificial Intelligence Computer Simulation

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking

Classifications MeSH