Investigation of the different parameters contributing to bubble sticking inside physiological bifurcations.
Bifurcation
Bubble sticking
Embolism
Gas embolotherapy
Multiphase flow
Volume of fluid
Journal
Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
26
09
2020
accepted:
04
12
2021
pubmed:
15
1
2022
medline:
21
1
2022
entrez:
14
1
2022
Statut:
ppublish
Résumé
Gas embolotherapy (GE) is a developing medical method which can be utilized either as an autonomous therapeutic method to treat vascularized solid tumors, or it can be combined with other medical procedures-such as high-intensity focused ultrasound-to improve their efficiency. This paper is dedicated to investigating the different parameters which influence bubble lodging inside human vasculature via 2D-modeling of bubble dynamics in arteries' and arterioles' bifurcations which are potential sticking positions. Values used in the simulations are in accordance with the non-dimensional physiological numbers. It is found out that inlet pressure plays a decisive role in bubble lodging; the lower the value, the higher the possibility of bubble sticking. On the other hand, gravity has a counteracting effect on bubble lodging in arteries, but not on arterioles. The initial length of the bubble is not a determining factor in sticking behavior, even though it affects the flow rate behavior. Surface tension, another critical factor, has a semi-linear impact on bubble resisting power; lowering the surface tension will reduce bubble resistance to the flow, diminishing the possibility of bubble lodging. Finally, it is shown that lower values for the static contact angle impose higher resistance to the flow.
Identifiants
pubmed: 35029813
doi: 10.1007/s11517-021-02485-w
pii: 10.1007/s11517-021-02485-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
599-618Informations de copyright
© 2021. International Federation for Medical and Biological Engineering.
Références
Kripfgans OD et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26(7):1177–1189
doi: 10.1016/S0301-5629(00)00262-3
Samuel S et al (2012) In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization. Microcirculation 19(6):501–509
doi: 10.1111/j.1549-8719.2012.00176.x
Calderón AJ et al (2006) Microfluidic model of bubble lodging in microvessel bifurcations. Appl Phys Lett 89(24):244103
doi: 10.1063/1.2402898
Apfel RE (1998) Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis. Google Patents
Shpak O et al (2014) Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci 111(5):1697–1702
doi: 10.1073/pnas.1312171111
Kripfgans OD et al (2004) On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am 116(1):272–281
doi: 10.1121/1.1755236
Li DS et al (2014) Initial nucleation site formation due to acoustic droplet vaporization. Appl Phys Lett 104(6):063703
doi: 10.1063/1.4864110
Kripfgans OD et al (2002) In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control 49(6):726–738
doi: 10.1109/TUFFC.2002.1009331
Kripfgans OD et al (2005) Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans Ultrason Ferroelectr Freq Control 52(7):1101–1110
doi: 10.1109/TUFFC.2005.1503996
Harmon JS et al (2019) Minimally invasive gas embolization using acoustic droplet vaporization in a rodent model of hepatocellular carcinoma. Sci Rep 9(1):1–11
doi: 10.1038/s41598-019-47309-y
Harmon JS et al (2018) Gas embolization in a rodent model of hepatocellular carcinoma using acoustic droplet vaporization. in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE
Feng Y et al (2018) Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization. Appl Phys Lett 112(23):233701
doi: 10.1063/1.5025594
Bapat PS, Pandit AB (2008) Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water. Ultrason Sonochem 15(1):65–77
doi: 10.1016/j.ultsonch.2007.01.005
Pitt WG et al (2014) Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem 21(2):879–891
doi: 10.1016/j.ultsonch.2013.08.005
Guédra M, Coulouvrat F (2015) A model for acoustic vaporization of encapsulated droplets. J Acoust Soc Am 138(6):3656–3667
doi: 10.1121/1.4937747
Qamar A et al (2010) Dynamics of acoustic droplet vaporization in gas embolotherapy. Appl Phys Lett 96(14):143702
doi: 10.1063/1.3376763
Qamar A et al (2012) Evolution of acoustically vaporized microdroplets in gas embolotherapy. J Biomech Eng 134(3):031010. https://doi.org/10.1115/1.4005980
Shpak O et al (2013) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134(2):1610–1621
doi: 10.1121/1.4812882
Wong ZZ et al (2011) Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter 7(8):4009–4016
doi: 10.1039/c1sm00007a
Lo AH et al (2007) Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control 54(5):933–946
doi: 10.1109/TUFFC.2007.339
Salajeghe R, Saidi MS (2018) A linear array transducer design for the purpose of gas embolotherapy, in ISME.: Semnan, Iran
Harmon JS, Kabinejadian F, Bull JL (2019) Ultrasound-guided gas embolization using a single linear array transducer. in 2019 IEEE International Ultrasonics Symposium (IUS). IEEE
Melich R et al (2020) Microfluidic preparation of various perfluorocarbon nanodroplets: characterization and determination of acoustic droplet vaporization (ADV) threshold. Int J Pharm 587:119651
doi: 10.1016/j.ijpharm.2020.119651
Lajoinie G, Segers T, Versluis M (2021) High-frequency acoustic droplet vaporization is initiated by resonance. Phys Rev Lett 126(3):034501
doi: 10.1103/PhysRevLett.126.034501
Pinho N et al (2019) Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med Biol Eng Compu 57(3):715–729
doi: 10.1007/s11517-018-1904-2
Athanasiou LS, Nezami FR, Edelman ER (2019) Hemodynamic consequences of a multilayer flow modulator in aortic dissection. Med Biol Eng Compu 57(9):1861–1874
doi: 10.1007/s11517-019-01997-w
Wong KK, Wu J, Liu G, Huang W, Ghista DN (2020) Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic param`eters causing atherosclerosis. Med Biol Eng Comput 58:1831–1843
Calderón AJ, Fowlkes JB, Bull JL (2005) Bubble splitting in bifurcating tubes: a model study of cardiovascular gas emboli transport. J Appl Physiol 99(2):479–487
doi: 10.1152/japplphysiol.00656.2004
Eshpuniyani B, Fowlkes JB, Bull JL (2005) A bench top experimental model of bubble transport in multiple arteriole bifurcations. Int J Heat Fluid Flow 26(6):865–872
doi: 10.1016/j.ijheatfluidflow.2005.10.002
Ye T, Bull JL (2004) Direct numerical simulations of micro-bubble expansion in gas embolotherapy. J Biomech Eng 126(6):745–759
doi: 10.1115/1.1824131
Ye T, Bull JL (2006) "Microbubble expansion in a flexible tube." p. 554–563.
Eshpuniyani B, Bull J (2005) A boundary element model of vascular gas bubble sticking and sliding. In: Ursino M, Brebbia CA, Pontrelli G, Magosso E (eds) Modelling in medicine and biology VI. WIT Press, Southampton, pp 331–339
doi: 10.2495/BIO050321
Qamar A et al (2017) Small-bubble transport and splitting dynamics in a symmetric bifurcation. Comput Methods Biomech Biomed Engin 20(11):1182–1194
doi: 10.1080/10255842.2017.1340466
Nagargoje MS, Gupta R. Numerical simulation of bubble transport and splitting dynamics for varying bifurcation angle. in 14th International Conference on CFD in 6 Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, Norway, October 12–14, 2020. 2020. SINTEF Academic Press
Damian SM (2012) Description and utilization of interFoam multiphase solver. International Center for Computational Methods in Engineering.
Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354
doi: 10.1016/0021-9991(92)90240-Y
Li DS (2014) Bubble Dynamics and Acoustic Droplet Vaporization in Gas Embolotherapy (Doctoral dissertation)
Zhang Z, Kleinstreuer C, Kim C (2001) Flow structure and particle transport in a triple bifurcation airway model. J Fluids Eng 123(2):320–330
doi: 10.1115/1.1359525
Van Leer B (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J Comput Phys 14(4):361–370
doi: 10.1016/0021-9991(74)90019-9
Winslow RM (2005) Blood substitutes. Elsevier
Chernyshev VS, Skliar M (2014) Surface tension of water in the presence of perfluorocarbon vapors. Soft Matter 10(12):1937–1943
doi: 10.1039/c3sm52289j