Direct sequence confirmation of qPCR products for gene doping assay validation in horses.


Journal

Drug testing and analysis
ISSN: 1942-7611
Titre abrégé: Drug Test Anal
Pays: England
ID NLM: 101483449

Informations de publication

Date de publication:
Jun 2022
Historique:
revised: 15 12 2021
received: 29 10 2021
accepted: 22 12 2021
pubmed: 8 1 2022
medline: 15 6 2022
entrez: 7 1 2022
Statut: ppublish

Résumé

The misuse of gene therapy by the introduction of transgenes via plasmid or viral vectors as a doping agent is an increasing concern in human and animal sports, not only in consideration to fair competition but also in potential detrimental effects to welfare. Doping events can be detected by polymerase chain reaction (PCR) amplification of a transgene-specific region of DNA. Quantitative real-time PCR (qPCR) is particularly suited to confirmatory investigations where precise limits of detection can be calculated. To fully validate a qPCR experiment, it is highly desirable to confirm the identity of the amplicon. Although post-PCR techniques such as melt curve and fragment size analysis can provide strong evidence that the amplicon is as expected, sequence identity confirmation may be beneficial as part of regulatory proceedings. We present here our investigation into two alternative processes for the direct assessment of qPCR products for five genes using next-generation sequencing: ligation of sequence-ready adapters to qPCR products and qPCR assays performed with primers tailed with Illumina flow cell binding sites. To fully test the robustness of the techniques at concentrations required for gene doping detection, we also calculated a putative limit of detection for the assays. Both ligated adapters and tailed primers were successful in producing sequence data for the qPCR products without further amplification. Ligated adapters are preferred, however, as they do not require re-optimisation of existing qPCR assays.

Identifiants

pubmed: 34994083
doi: 10.1002/dta.3219
doi:

Substances chimiques

DNA Primers 0
DNA 9007-49-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1017-1025

Subventions

Organisme : British Horseracing Authority

Informations de copyright

© 2022 John Wiley & Sons, Ltd.

Références

Tozaki T, Hamilton NA. Control of gene doping in human and horse sports. Gene Ther. 2021;1-6. doi:10.1038/s41434-021-00267-5
IECampbell MLH, McNamee MJ. Ethics, genetic technologies and equine sports: The prospect of regulation of a modified therapeutic use exemption policy. Sport Ethics Philos. 2021;15(2):227-250. doi:10.1080/17511321.2020.1737204
Cantelmo RA, Da Silva AP, Mendes-Junior CT, Dorta DJ. Gene doping: Present and future. Eur J Sport Sci. 2019;20(8):1-9. doi:10.1080/17461391.2019.1695952
Ortved KF, Begum L, Mohammed HO, Nixon AJ. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol Ther. 2015;23(2):363-373. doi:10.1038/mt.2014.198
Kovac M, Litvin YA, Aliev RO, et al. Gene therapy using plasmid DNA encoding VEGF164 and FGF2 Genes: A novel treatment of naturally occurring tendinitis and desmitis in horses. Front Pharmacol. 2018;9:978. doi:10.3389/fphar.2018.00978
Baoutina A, Coldham T, Bains GS, Emslie KR. Gene doping detection: Evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Ther. 2010;17(8):1022-1032. doi:10.1038/gt.2010.49
Sugasawa T, Aoki K, Yanazawa K, Takekoshi K. Detection of multiple transgene fragments in a mouse model of gene doping based on plasmid vector using TaqMan-qPCR assay. Genes (Basel). 2020;11:750. doi:10.3390/genes11070750
Tozaki T, Gamo S, Takasu M, et al. Digital PCR detection of plasmid DNA administered to the skeletal muscle of a microminipig: a model case study for gene doping detection. BMC Res Notes. 2018;11:708. doi:10.1186/s13104-018-3815-6
Tozaki T, Ohnuma A, Takasu M, et al. Droplet digital PCR detection of the erythropoietin transgene from horse plasma and urine for gene-doping control. Genes (Basel). 2019;10:243. doi:10.3390/genes10030243
Tozaki T, Ohnuma A, Kikuchi M, et al. Microfluidic quantitative PCR detection of 12 transgenes from horse plasma for gene doping control. Genes. 2020;11:457. doi:10.3390/GENES11040457
de Boer EN, van der Wouden PE, Johansson LF, van Diemen CC, Haisma HJ. A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA. Gene Ther. 2019;26:338-346. doi:10.1038/s41434-019-0091-6
Maniego J, Pesko B, Habershon-Butcher J, et al. Screening for gene doping transgenes in horses via the use of massively parallel sequencing. Gene Ther. 2021;1-11. doi:10.1038/s41434-021-00279-1
Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611-622. doi:10.1373/clinchem.2008.112797
Kudo E, Israelow B, Vogels CBF, et al. Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLoS Biol. 2020;18:e3000867. doi:10.1371/journal.pbio.3000867
Vogels CBF, Brito AF, Wyllie AL, et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat Microbiol. 2020;5:1299-1305. doi:10.1038/s41564-020-0761-6
Klymus KE, Merkes CM, Allison MJ, et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ DNA. 2020;2:271-282. doi:10.1002/edn3.29
Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clin Microbiol Rev. 2006;19:165-256. doi:10.1128/CMR.19.1.165-256.2006
Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front Microbiol. 2017;8:108. doi:10.3389/fmicb.2017.00108
Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017;12:1-6. doi:10.1016/j.bdq.2017.04.001
Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49-S52.
Broeders S, Huber I, Grohmann L, et al. D. Morisset Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 2014;37:115-126. doi:10.1016/j.tifs.2014.03.008
Cheung HW, Wong KS, Lin VYC, Wan TSM, Ho ENM. A duplex qPCR assay for human erythropoietin (EPO) transgene to control gene doping in horses. Drug Test Anal. 2021;13:113-121. doi:10.1002/dta.2907
“Guidelines - Gene Doping Detection based on Polymerase Chain Reaction (PCR)|World Anti-Doping Agency,” Available at: https://www.wada-ama.org/en/resources/laboratories/guidelines-gene-doping-detection-based-on-polymerase-chain-reaction-pcr, n.d.
Holton TA, Graham MW. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 1991;19:1156. doi:10.1093/nar/19.5.1156
Howe KL, Achuthan P, Allen J, et al. Ensembl 2021. Nucleic Acids Res. 2021;49:D884-D891. doi:10.1093/nar/gkaa942
Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73:627-631. doi:10.1086/377590
Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol - Regul Integr Comp Physiol. 2004;286. doi:10.1152/ajpregu.00577.2003
Baoutina A, Coldham T, Fuller B, Emslie KR. Improved Detection of Transgene and Nonviral Vectors in Blood. Hum Gene Ther Methods. 2013;24:345-354. doi:10.1089/hgtb.2013.128
Déry MAC, Michaud MD, Richard DE. Hypoxia-inducible factor 1: Regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37:535-540. doi:10.1016/J.BIOCEL.2004.08.012
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal. 2017;9:1456-1471. doi:10.1002/dta.2198
Angione AR, Jiang C, Pan D, Wang YX, Kuang S. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration. Skelet Muscle. 2011;1:33. doi:10.1186/2044-5040-1-33
Cho HW, Shin S, Park JW, et al. Molecular characterization and expression analysis of the peroxisome proliferator activated receptor delta (PPARδ) gene before and after exercise in horse. Asian-Australasian J Anim Sci. 2015;28:697-702. doi:10.5713/AJAS.14.0575
Kraus RM, Stallings HW, Yeager RC, Gavin TP. Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol. 2004;96:1445-1450. doi:10.1152/japplphysiol.01031.2003
Moulay G, Scherman D, Kichler A. Fasting increases the in vivo gene delivery of AAV vectors. Clin Transl Sci. 2010;3:333-336. doi:10.1111/j.1752-8062.2010.00245.x

Auteurs

Jillian Maniego (J)

Sport and Specialised Analytical Services, LGC, Cambridgeshire, UK.

Bogusia Pesko (B)

Sport and Specialised Analytical Services, LGC, Cambridgeshire, UK.

Pamela Hincks (P)

Sport and Specialised Analytical Services, LGC, Cambridgeshire, UK.

Polly Taylor (P)

Sport and Specialised Analytical Services, LGC, Cambridgeshire, UK.

Graham Stewart (G)

School of Biosciences and Medicine, University of Surrey, Guildford, UK.

Christopher Proudman (C)

School of Veterinary Medicine, University of Surrey, Guildford, UK.

James Scarth (J)

Sport and Specialised Analytical Services, LGC, Cambridgeshire, UK.

Edward Ryder (E)

Sport and Specialised Analytical Services, LGC, Cambridgeshire, UK.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH