Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease.

Alzheimer's disease Amyloid-β Cullins IRS1 Insulin MLN-4924 Metabolic syndrome Neddylation TNFα

Journal

Translational neurodegeneration
ISSN: 2047-9158
Titre abrégé: Transl Neurodegener
Pays: England
ID NLM: 101591861

Informations de publication

Date de publication:
06 01 2022
Historique:
received: 17 09 2021
accepted: 24 12 2021
entrez: 6 1 2022
pubmed: 7 1 2022
medline: 5 4 2022
Statut: epublish

Résumé

The metabolic syndrome is a consequence of modern lifestyle that causes synaptic insulin resistance and cognitive deficits and that in interaction with a high amyloid load is an important risk factor for Alzheimer's disease. It has been proposed that neuroinflammation might be an intervening variable, but the underlying mechanisms are currently unknown. We utilized primary neurons to induce synaptic insulin resistance as well as a mouse model of high-risk aging that includes a high amyloid load, neuroinflammation, and diet-induced obesity to test hypotheses on underlying mechanisms. We found that neddylation and subsequent activation of cullin-RING ligase complexes induced synaptic insulin resistance through ubiquitylation and degradation of the insulin-receptor substrate IRS1 that organizes synaptic insulin signaling. Accordingly, inhibition of neddylation preserved synaptic insulin signaling and rescued memory deficits in mice with a high amyloid load, which were fed with a 'western diet'. Collectively, the data suggest that neddylation and degradation of the insulin-receptor substrate is a nodal point that links high amyloid load, neuroinflammation, and synaptic insulin resistance to cognitive decline and impaired synaptic plasticity in high-risk aging.

Sections du résumé

BACKGROUND
The metabolic syndrome is a consequence of modern lifestyle that causes synaptic insulin resistance and cognitive deficits and that in interaction with a high amyloid load is an important risk factor for Alzheimer's disease. It has been proposed that neuroinflammation might be an intervening variable, but the underlying mechanisms are currently unknown.
METHODS
We utilized primary neurons to induce synaptic insulin resistance as well as a mouse model of high-risk aging that includes a high amyloid load, neuroinflammation, and diet-induced obesity to test hypotheses on underlying mechanisms.
RESULTS
We found that neddylation and subsequent activation of cullin-RING ligase complexes induced synaptic insulin resistance through ubiquitylation and degradation of the insulin-receptor substrate IRS1 that organizes synaptic insulin signaling. Accordingly, inhibition of neddylation preserved synaptic insulin signaling and rescued memory deficits in mice with a high amyloid load, which were fed with a 'western diet'.
CONCLUSIONS
Collectively, the data suggest that neddylation and degradation of the insulin-receptor substrate is a nodal point that links high amyloid load, neuroinflammation, and synaptic insulin resistance to cognitive decline and impaired synaptic plasticity in high-risk aging.

Identifiants

pubmed: 34986876
doi: 10.1186/s40035-021-00277-8
pii: 10.1186/s40035-021-00277-8
pmc: PMC8734066
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2

Informations de copyright

© 2022. The Author(s).

Références

Cell Metab. 2013 Dec 3;18(6):831-43
pubmed: 24315369
Cold Spring Harb Perspect Biol. 2014 Jan 01;6(1):
pubmed: 24384568
Cell. 2013 Feb 28;152(5):1119-33
pubmed: 23452857
Nat Rev Mol Cell Biol. 2015 Jan;16(1):30-44
pubmed: 25531226
J Vis Exp. 2014 Aug 10;(90):e51310
pubmed: 25145907
J Clin Invest. 2012 Apr;122(4):1316-38
pubmed: 22476197
Cell Signal. 2011 Oct;23(10):1515-27
pubmed: 21620960
Exp Neurol. 2019 Jun;316:1-11
pubmed: 30930096
Nat Commun. 2019 Nov 29;10(1):5448
pubmed: 31784514
Nat Struct Mol Biol. 2020 Feb;27(2):210-220
pubmed: 32015554
Alzheimers Dement. 2014 Feb;10(1 Suppl):S26-32
pubmed: 24529521
J Neurosci. 2011 Sep 7;31(36):12790-801
pubmed: 21900558
Lancet Neurol. 2020 Sep;19(9):758-766
pubmed: 32730766
PLoS One. 2011 Feb 18;6(2):e17276
pubmed: 21364755
J Clin Invest. 2013 Feb;123(2):531-9
pubmed: 23485579
PLoS Biol. 2008 Feb;6(2):e34
pubmed: 18303947
Front Aging Neurosci. 2017 May 03;9:118
pubmed: 28515688
Sci Rep. 2019 Nov 29;9(1):17935
pubmed: 31784571
JAMA. 2004 Nov 10;292(18):2237-42
pubmed: 15536110
J Alzheimers Dis. 2018;64(s1):S567-S610
pubmed: 29843241
Nature. 1994 Nov 10;372(6502):182-6
pubmed: 7969452
J Alzheimers Dis. 2011;25(1):29-41
pubmed: 21335659
PLoS Genet. 2016 Mar 15;12(3):e1005907
pubmed: 26977770
Behav Brain Res. 2009 Dec 1;204(1):206-11
pubmed: 19523494
Mol Cell. 2008 May 23;30(4):403-14
pubmed: 18498745
Neuropsychopharmacology. 2020 Nov;45(12):2120-2130
pubmed: 32726795
J Biol Chem. 2006 May 12;281(19):13805-13816
pubmed: 16522626
J Cell Biol. 2019 Mar 4;218(3):993-1010
pubmed: 30670470
J Clin Invest. 2012 Apr;122(4):1339-53
pubmed: 22476196
Endocrinology. 2010 Jan;151(1):75-84
pubmed: 19887566
Nature. 2009 Apr 9;458(7239):732-6
pubmed: 19360080
Am J Pathol. 2004 Oct;165(4):1289-300
pubmed: 15466394
Lancet Neurol. 2015 Apr;14(4):388-405
pubmed: 25792098
Lancet Neurol. 2006 Jan;5(1):64-74
pubmed: 16361024
J Med Chem. 2021 May 13;64(9):6161-6178
pubmed: 33857374
Nat Rev Neurosci. 2015 Nov;16(11):660-71
pubmed: 26462756
Nat Neurosci. 2013 Mar;16(3):300-8
pubmed: 23354329
Neurobiol Dis. 2014 Feb;62:273-85
pubmed: 24141019
Learn Mem. 2013 Feb 15;20(3):139-46
pubmed: 23418393
Mol Cell Biol. 2002 Feb;22(4):1016-26
pubmed: 11809794
Biochimie. 2005 Jan;87(1):99-109
pubmed: 15733744
Acta Neuropathol. 2014;127(6):787-801
pubmed: 24803226
Neurology. 2006 Sep 12;67(5):843-7
pubmed: 16966548
Acta Neuropathol. 2014 Nov;128(5):679-89
pubmed: 25107476
Neuron. 2016 Dec 7;92(5):1007-1019
pubmed: 27839998
Nat Rev Endocrinol. 2019 May;15(5):288-298
pubmed: 30814686
EMBO Rep. 2017 Jun;18(6):962-981
pubmed: 28420656
Exp Mol Med. 2015 Mar 13;47:e149
pubmed: 25766618
Trends Neurosci. 2017 Apr;40(4):237-253
pubmed: 28318543
Cell. 2007 Jun 29;129(7):1261-74
pubmed: 17604717
Neuron. 1995 Feb;14(2):457-66
pubmed: 7857653
Biochem Biophys Res Commun. 2000 Sep 24;276(2):422-7
pubmed: 11027491
Front Aging Neurosci. 2021 Apr 01;13:654509
pubmed: 33867971
Alzheimers Res Ther. 2017 Oct 5;9(1):83
pubmed: 28982375
Ageing Res Rev. 2010 Oct;9(4):399-417
pubmed: 20444434
J Biol Chem. 2012 Nov 23;287(48):40758-66
pubmed: 23045529
Nat Neurosci. 2015 Feb;18(2):239-51
pubmed: 25581363
Aging Cell. 2019 Jun;18(3):e12887
pubmed: 30821420
Nature. 2012 May 02;485(7400):651-5
pubmed: 22660329
Am J Epidemiol. 1997 Feb 15;145(4):301-8
pubmed: 9054233
Mol Cell Neurosci. 2015 Mar;65:52-7
pubmed: 25701678
J Neurosci. 2009 Jul 15;29(28):9078-89
pubmed: 19605645
Neurosci Biobehav Rev. 2021 Sep;128:233-243
pubmed: 34153343
Front Neurosci. 2018 Jun 08;12:383
pubmed: 29950970
Front Neurosci. 2019 Mar 26;13:265
pubmed: 30983955
J Neuroinflammation. 2018 Sep 24;15(1):276
pubmed: 30249283
J Clin Exp Neuropsychol. 2004 Nov;26(8):1044-80
pubmed: 15590460
Neurobiol Dis. 2014 Dec;72 Pt A:3-12
pubmed: 25173806
Nat Neurosci. 2011 Oct 23;14(11):1447-54
pubmed: 22019731
PLoS Biol. 2006 Sep;4(9):e271
pubmed: 16903782
World J Diabetes. 2014 Dec 15;5(6):889-93
pubmed: 25512792
Mol Cell. 2017 Feb 2;65(3):416-431.e6
pubmed: 28157504

Auteurs

Alessandro Dario Confettura (AD)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.

Eleonora Cuboni (E)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.

Mohamed Rafeet Ammar (MR)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.

Shaobo Jia (S)

German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.

Guilherme M Gomes (GM)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.
Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.

PingAn Yuanxiang (P)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.

Rajeev Raman (R)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.

Tingting Li (T)

Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.

Katarzyna M Grochowska (KM)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.
Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.

Robert Ahrends (R)

Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.
Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090, Wien, Austria.

Anna Karpova (A)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.
Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.

Alexander Dityatev (A)

German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.
Medical Faculty, Otto-von-Guericke University, 39120, Magdeburg, Germany.

Michael R Kreutz (MR)

RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany. michael.kreutz@lin-magdeburg.de.
German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany. michael.kreutz@lin-magdeburg.de.
Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany. michael.kreutz@lin-magdeburg.de.
Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany. michael.kreutz@lin-magdeburg.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH