Convergent evolution of venom gland transcriptomes across Metazoa.
convergent evolution
evolutionary novelties
gene expression
stress response
venom
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
04 01 2022
04 01 2022
Historique:
accepted:
10
11
2021
entrez:
5
1
2022
pubmed:
6
1
2022
medline:
22
2
2022
Statut:
ppublish
Résumé
Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.
Identifiants
pubmed: 34983844
pii: 2111392119
doi: 10.1073/pnas.2111392119
pmc: PMC8740685
pii:
doi:
Substances chimiques
Venoms
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Bioinformatics. 2012 Mar 15;28(6):882-3
pubmed: 22257669
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102
pubmed: 22251901
BMC Bioinformatics. 2019 Jul 18;20(1):400
pubmed: 31319797
J Exp Biol. 2020 Feb 7;223(Pt Suppl 1):
pubmed: 32034048
Cell Tissue Res. 2000 Mar;299(3):417-26
pubmed: 10772256
Mol Biol Evol. 2015 Aug;32(8):2085-96
pubmed: 25862140
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489
pubmed: 33237286
Proc Biol Sci. 2019 Mar 13;286(1898):20182735
pubmed: 30862287
Nucleic Acids Res. 2021 Jan 8;49(D1):D831-D847
pubmed: 33037820
Bioinformatics. 2018 Mar 15;34(6):1053-1055
pubmed: 29091997
Trends Ecol Evol. 2008 Jan;23(1):26-32
pubmed: 18022278
Bioinformatics. 2006 Jul 1;22(13):1658-9
pubmed: 16731699
Nucleic Acids Res. 2019 Jan 8;47(D1):D807-D811
pubmed: 30395283
Bioinformatics. 2010 May 15;26(10):1376-7
pubmed: 20371495
Science. 2015 Jan 23;347(6220):1260419
pubmed: 25613900
Bioinformatics. 2018 Mar 15;34(6):1074-1076
pubmed: 29069336
Curr Biol. 2015 Nov 16;25(22):2939-50
pubmed: 26603774
Philos Trans R Soc Lond B Biol Sci. 2019 Jul 22;374(1777):20190102
pubmed: 31154976
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Cell. 2020 Jan 23;180(2):233-247.e21
pubmed: 31978343
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Nat Biotechnol. 2016 May;34(5):525-7
pubmed: 27043002
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354
pubmed: 33156333
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Bioinformatics. 2020 Jan 15;36(2):422-429
pubmed: 31350877
Bioinformatics. 2019 Feb 1;35(3):526-528
pubmed: 30016406
Genome Res. 2019 Apr;29(4):590-601
pubmed: 30898880
Sci Rep. 2020 Oct 22;10(1):18083
pubmed: 33093509
Toxins (Basel). 2019 Nov 14;11(11):
pubmed: 31739590
F1000Res. 2015 Dec 30;4:1521
pubmed: 26925227
J Biomed Semantics. 2014 May 19;5:21
pubmed: 25009735
Cells Tissues Organs. 2010;191(4):336-54
pubmed: 20224277
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Trends Genet. 2010 Sep;26(9):400-5
pubmed: 20685006
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Stat Appl Genet Mol Biol. 2012 Oct 22;11(5):
pubmed: 23104842
Science. 2018 Aug 31;361(6405):842-844
pubmed: 30166472
Gigascience. 2021 Mar 25;10(3):
pubmed: 33764467
Nat Rev Genet. 2013 Nov;14(11):751-64
pubmed: 24105273
Biochem Pharmacol. 2020 Nov;181:114096
pubmed: 32535105
Toxicon. 2012 Sep 15;60(4):551-7
pubmed: 22465017
Proc Natl Acad Sci U S A. 2021 Apr 6;118(14):
pubmed: 33782124
Trends Ecol Evol. 2011 Jun;26(6):298-306
pubmed: 21459472
Mol Biol Evol. 2020 Oct 1;37(10):2777-2790
pubmed: 32462210