Health Benefits of Turmeric and Curcumin Against Food Contaminants.

Curcumin Food contaminant Toxicity

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
entrez: 4 1 2022
pubmed: 5 1 2022
medline: 6 1 2022
Statut: ppublish

Résumé

Food contaminants are one of the most important and concerning issues worldwide. Protecting the public from the harm of contaminated foods has become a daunting task. On the other hand, the elimination of these contaminants from food seems impossible. Therefore, one of the best solutions is to recommend inexpensive and publicly available food additives like many spices used in food as flavoring and coloring. Curcuma longa or turmeric is one of the well-known spice, which confers many medicinal properties. Curcumin is the main active ingredient in turmeric, which has many health benefits. Recent research has revealed that turmeric/curcumin has protective effects against toxicants, mostly natural and chemical toxins. In this review article, we reviewed studies related to the protective effects of turmeric and its active ingredient against food contaminants.

Identifiants

pubmed: 34981478
doi: 10.1007/978-3-030-73234-9_12
doi:

Substances chimiques

Curcumin IT942ZTH98

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

171-197

Informations de copyright

© 2021. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Salter, S. J. (2014). The food-borne identity. Nature Reviews. Microbiology, 12(8), 533.
pubmed: 24975320
Robertson, L. J., Sprong, H., Ortega, Y. R., van der Giessen, J. W., & Fayer, R. (2014). Impacts of globalisation on foodborne parasites. Trends in Parasitology, 30(1), 37–52.
pubmed: 24140284
Havelaar, A. H., Cawthorne, A., Angulo, F., Bellinger, D., Corrigan, T., Cravioto, A., et al. (2013). WHO initiative to estimate the global burden of foodborne diseases. The Lancet, 381S59.
Song, Q., Zheng, Y.-J., Xue, Y., Sheng, W.-G., & Zhao, M.-R. (2017). An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination. Neurocomputing, 22616–22622.
Control CfD, Prevention. (2013). Surveillance for foodborne disease outbreaks–United States, 2009–2010. MMWR. Morbidity and Mortality Weekly Report, 62(3), 41.
Tirima, S., Bartrem, C., von Lindern, I., von Braun, M., Lind, D., Anka, S. M., et al. (2018). Food contamination as a pathway for lead exposure in children during the 2010-2013 lead poisoning epidemic in Zamfara, Nigeria. Journal of Environmental Sciences (China), 67260–67272.
Soleimani, V., Sahebkar, A., & Hosseinzadeh, H. (2018). Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Phytotherapy Research, 32(6), 985–995.
pubmed: 29480523
Rezvanirad, A., Mardani, M., Ahmadzadeh, S. M., Asgary, S., Naimi, A., & Mahmoudi, G. (2016). Curcuma longa: A review of therapeutic effects in traditional and modern medical references. Journal of Chemical and Pharmaceutical Sciences, 9(4), 3438–3448.
Andrew, R., & Izzo, A. A. (2017). Principles of pharmacological research of nutraceuticals. British Journal of Pharmacology, 174(11), 1177.
pubmed: 28500635 pmcid: 5429327
Qin, S., Huang, L., Gong, J., Shen, S., Huang, J., Ren, H., et al. (2017). Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutrition Journal, 16(1), 68.
pubmed: 29020971 pmcid: 5637251
de Melo, I. S. V., dos Santos, A. F., & Bueno, N. B. (2018). Curcumin or combined curcuminoids are effective in lowering the fasting blood glucose concentrations of individuals with dysglycemia: Systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 128, 137–144.
pubmed: 28928074
Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. Journal of Medicinal Food, 19(8), 717–729.
pubmed: 27533649 pmcid: 5003001
Farzaei, M. H., Zobeiri, M., Parvizi, F., El-Senduny, F. F., Marmouzi, I., Coy-Barrera, E., et al. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7), 855.
pmcid: 6073929
McQuade RM (2015) The therapeutic role of turmeric in treatment and prevention of Alzheimer’s disease.
Ng, Q. X., Koh, S. S. H., Chan, H. W., & Ho, C. Y. X. (2017). Clinical use of curcumin in depression: A meta-analysis. Journal of the American Medical Directors Association, 18(6), 503–508.
pubmed: 28236605
Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 46(1), 5–20.
pubmed: 31580521
Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), 921–931.
pubmed: 27719643
Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L.E., Majeed, M., et al. (2018). Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Research, 68(7), 403-409.
Iranshahi, M., Sahebkar, A., Hosseini, S. T., Takasaki, M., Konoshima, T., & Tokuda, H. (2010). Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 17(3–4), 269–273. 
Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M.H., Khanbabaei, H., Shamshirian, A., et al. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology Research and Practice, 215(10), art. no. 152556.
Momtazi, A. A., Derosa, G., Maffioli, P., Banach, M., & Sahebkar, A. (2016). Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Molecular Diagnosis and Therapy, 20(4), 335–345.
pubmed: 27241179
Panahi, Y., Ahmadi, Y., Teymouri, M., Johnston, T. P., & Sahebkar, A. (2018). Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Journal of Cellular Physiology, 233(1), 141–152.
pubmed: 28012169
Bianconi, V., Sahebkar, A., Atkin, S.L., & Pirro, M. (2018). The regulation and importance of monocyte chemoattractant protein-1. Current Opinion in Hematology, 25(1), 44–51.
Teymouri, M., Pirro, M., Johnston, T. P., & Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 43(3), 331–346.
pubmed: 27896883
Ahsan, R., Arshad, M., Khushtar, M., Ahmad, M. A., Muazzam, M., Akhter, M. S., et al. (2020). A comprehensive review on physiological effects of curcumin. Drug Research (Stuttg), 70(10), 441–447.
Hosseini, A., & Hosseinzadeh, H. (2018). Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomedicine & Pharmacotherapy, 99411–99421.
Seyedzadeh, M. H., Safari, Z., Zare, A., Navashenaq, J. G., Kardar, G. A., & Khorramizadeh, M. R. (2014). Study of curcumin immunomodulatory effects on reactive astrocyte cell function. International Immunopharmacology, 22(1), 230–235.
pubmed: 24998635
Abdollahi, E., Momtazi, A. A., Johnston, T. P., & Sahebkar, A. (2018). Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? Journal of Cellular Physiology, 233(2), 830–848.
pubmed: 28059453
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133–164). Springer.
García-Niño, W. R., & Pedraza-Chaverrí, J. (2014). Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69182–69201.
Mehrandish, R., Rahimian, A., & Shahriary, A. (2019). Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. Journal of Herbmed Pharmacology, 8(2), 69–77.
Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.
pubmed: 14757716
Kim, J.-J., Kim, Y.-S., & Kumar, V. (2019). Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54226–54231.
Zhai, Q., Narbad, A., & Chen, W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients, 7(1), 552–571.
pubmed: 25594439
Amadi, C. N., Offor, S. J., Frazzoli, C., & Orisakwe, O. E. (2019). Natural antidotes and management of metal toxicity. Environmental Science and Pollution Research, 26(18), 18032–18052.
pubmed: 31079302
Tsuda, T. (2018). Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food & Function, 9(2), 705–714.
Daniel, S., Limson, J. L., Dairam, A., Watkins, G. M., & Daya, S. (2004). Through metal binding, curcumin protects against lead-and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. Journal of Inorganic Biochemistry, 98(2), 266–275.
pubmed: 14729307
Xu, X.-Y., Meng, X., Li, S., Gan, R.-Y., Li, Y., & Li, H.-B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10(10), 1553.
pmcid: 6213156
Motaharinia, J., Panahi, Y., Barreto, G. E., Beiraghdar, F., & Sahebkar, A. (2019). Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. BioFactors, 45(5), 690–702.
pubmed: 31246346
Mohajeri, M., Rezaee, M., & Sahebkar, A. (2017). Cadmium-induced toxicity is rescued by curcumin: A review. BioFactors, 43(5), 645–661.
pubmed: 28719149
Kim, K. S., Lim, H.-J., Lim, J. S., Son, J. Y., Lee, J., Lee, B. M., et al. (2018). Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food and Chemical Toxicology, 11434–11440.
Eke, D., Çelik, A., Yilmaz, M. B., Aras, N., Kocatürk Sel, S., & Alptekin, D. (2017). Apoptotic gene expression profiles and DNA damage levels in rat liver treated with perfluorooctane sulfonate and protective role of curcumin. International Journal of Biological Macromolecules, 104(Pt A), 515–520.
pubmed: 28634058
Deevika, B., Asha, S., Taju, G., & Nalini, T. (2012). Cadmium acetate induced nephrotoxicity and protective role of curcumin in rats. Asian Journal of Pharmaceutical and Clinical Research [Internet], 5(3 Suppl), 186–188.
Tarasub, N., Tarasub, C., & Ayutthaya, W. D. N. (2011). Protective role of curcumin on cadmium-induced nephrotoxicity in rats. Journal of Environmental Chemistry and Ecotoxicology, 3(2), 17–24.
Rennolds, J., Malireddy, S., Hassan, F., Tridandapani, S., Parinandi, N., Boyaka, P. N., et al. (2012). Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochemical and Biophysical Research Communications, 417(1), 256–261.
pubmed: 22142850
SHARMA, S., & KUMARI, A. (2018). Protective effect of Curcuma Longa administration on lung of mice exposed to cadmium. Asian Journal of Pharmaceutical and Clinical Research, 11(10), 536–539.
El-Mansy, A., Mazroa, S., Hamed, W., Yaseen, A., & El-Mohandes, E. (2016). Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity. Biotechnic & Histochemistry, 91(3), 170–181.
Tarasub, N., Junseecha, T., Tarasub, C., & Ayutthaya, W. D. N. (2012). Protective effects of curcumin, vitamin C, or their combination on cadmium-induced hepatotoxicity. Journal of Basic and Clinical Pharmacy, 3(2), 273.
pubmed: 24826037 pmcid: 3979253
Deevika, B., Asha, S., Taju, G., & Nalini, T. (2012). A study of cadmium acetate induced toxicity and heptoprotective activities of curcumin in albino rats. International Journal of Research in Pharmaceutical Sciences, 3(3), 436–440.
Abu-Taweel, G. M. (2016). Effects of curcumin on the social behavior, blood composition, reproductive hormones in plasma and brain acetylcholinesterase in cadmium intoxicated mice. Saudi Journal of Biological Sciences, 23(2), 219–228.
pubmed: 26981003
Abu-Taweel, G. M., Ajarem, J. S., & Ahmad, M. (2013). Protective effect of curcumin on anxiety, learning behavior, neuromuscular activities, brain neurotransmitters and oxidative stress enzymes in cadmium intoxicated mice. Journal of Behavioral and Brain Science, 3(01), 74.
Oguzturk, H., Ciftci, O., Aydin, M., Timurkaan, N., Beytur, A., & Yilmaz, F. (2012). Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia, 44(4), 243–249.
pubmed: 22257170
Gao, S., Duan, X., Wang, X., Dong, D., Liu, D., Li, X., et al. (2013). Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food and Chemical Toxicology, 59739–59747.
Suhl, J., Leonard, S., Weyer, P., Rhoads, A., Siega-Riz, A. M., Renee Anthony, T., et al. (2018). Maternal arsenic exposure and nonsyndromic orofacial clefts. Birth Defects Research, 110(19), 1455–1467.
pubmed: 30367712 pmcid: 6885005
Sinha, D., Mukherjee, S., Roy, S., Bhattacharya, R., & Roy, M. (2009). Modulation of arsenic induced genotoxicity by curcumin in human lymphocytes. Journal of Environmental Chemistry and Ecotoxicology, 11–11.
Flora, S., Bhadauria, S., Kannan, G., & Singh, N. (2007). Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: A review. Journal of Environmental Biology, 28(2), 333.
pubmed: 17929749
Liu, J., & Waalkes, M. P. (2008). Liver is a target of arsenic carcinogenesis. Toxicological Sciences, 105(1), 24–32.
pubmed: 18566022 pmcid: 2734307
Yousef, M. I., El-Demerdash, F. M., & Radwan, F. M. (2008). Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food and Chemical Toxicology, 46(11), 3506–3511.
pubmed: 18809455
Muthumani, M., & Miltonprabu, S. (2015). Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chemico-Biological Interactions, 23595–23105.
Biswas, J., Sinha, D., Mukherjee, S., Roy, S., Siddiqi, M., & Roy, M. (2010). Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human & Experimental Toxicology, 29(6), 513–524.
Sankar, P., Telang, A. G., Kalaivanan, R., Karunakaran, V., Suresh, S., & Kesavan, M. (2016). Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicology and Industrial Health, 32(3), 410–421.
pubmed: 24105067
Yadav, R. S., Chandravanshi, L. P., Shukla, R. K., Sankhwar, M. L., Ansari, R. W., Shukla, P. K., et al. (2011). Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology, 32(6), 760–768.
pubmed: 21839772
Srivastava, P., Yadav, R. S., Chandravanshi, L. P., Shukla, R. K., Dhuriya, Y. K., Chauhan, L. K., et al. (2014). Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicology and Applied Pharmacology, 279(3), 428–440.
pubmed: 24952339
Jahan-Abad, A. J., Morteza-Zadeh, P., Negah, S. S., & Gorji, A. (2017). Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna Journal of Phytomedicine, 7(4), 376.
García-Niño, W. R., Tapia, E., Zazueta, C., Zatarain-Barrón, Z. L., Hernández-Pando, R., Vega-García, C. C., et al. (2013). Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. Evidence-based Complementary and Alternative Medicine, 2013.
Devi, K. R., Mosheraju, M., & Reddy, K. D. (2012). Curcumin prevents chromium induced sperm characteristics in mice. IOSR Journal of Pharmacy, 2, 312–316.
Molina-Jijón, E., Tapia, E., Zazueta, C., El Hafidi, M., Zatarain-Barrón, Z. L., Hernández-Pando, R., et al. (2011). Curcumin prevents Cr (VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radical Biology and Medicine, 51(8), 1543–1557.
pubmed: 21839166
Shukla, P. K., Khanna, V. K., Khan, M. Y., & Srimal, R. C. (2003). Protective effect of curcumin against lead neurotoxicity in rat. Human & Experimental Toxicology, 22(12), 653–658.
Dairam, A., Limson, J. L., Watkins, G. M., Antunes, E., & Daya, S. (2007). Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. Journal of Agricultural and Food Chemistry, 55(3), 1039–1044.
pubmed: 17263510
Mahjoub, S., & Moghaddam, A. H. (2011). The role of exercising and curcumin on the treatment of lead-induced cardiotoxicity in rats. Iranian Journal of Health and Physical Activity, 2(1), 1–5.
Baxla, S., Gora, R., Kerketta, P., Kumar, N., Roy, B., & Patra, P. (2013). Hepatoprotective effect of Curcuma longa against lead induced toxicity in Wistar rats. Veterinary World, 6(9), 664–667.
Flora, G., Gupta, D., & Tiwari, A. (2013). Preventive efficacy of bulk and nanocurcumin against lead-induced oxidative stress in mice. Biological Trace Element Research, 152(1), 31–40.
pubmed: 23292317
Memar Moghadam, M. (2011). Effects of lead acetate, endurance training and curcumin supplementation on heat shock protein levels in liver tissue. Iranian Journal of Endocrinology and Metabolism, 13(1), 74–81.
Soliman, M. M., Baiomy, A. A., & Yassin, M. H. (2015). Molecular and histopathological study on the ameliorative effects of curcumin against lead acetate-induced hepatotoxicity and nephrototoxicity in Wistar rats. Biological Trace Element Research, 167(1), 91–102.
pubmed: 25758718
Ghoniem, M. H., El-Sharkawy, N. I., Hussein, M. M., & Moustafa, G. G. (2012). Efficacy of curcumin on lead induced nephrotoxicity in female albino rats. Journal of American Science, 8(6), 502–510.
Abu-Taweel, G. M. (2019). Neurobehavioral protective properties of curcumin against the mercury chloride treated mice offspring. Saudi Journal of Biological Sciences, 26(4), 736–743.
pubmed: 31048998
Agarwal, R., Goel, S. K., & Behari, J. R. (2010). Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. Journal of Applied Toxicology, 30(5), 457–468.
pubmed: 20229497
Agarwal, A., & Saxena, P. N. (2018). Curcumin administration attenuates accumulation of mercuric chloride in vital organs of experimental rats and leads to prevent hepatic and renal toxicity. International Journal of Pharmaceutical Sciences and Research, 9(3), 1176–1182.
Liu, W., Xu, Z., Li, H., Guo, M., Yang, T., Feng, S., et al. (2017). Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Human & Experimental Toxicology, 36(9), 949–966.
Joshi, D., Mittal, D. K., Kumar, R., Kumar Srivastav, A., & Srivastav, S. K. (2013). Protective role of Curcuma longa extract and curcumin on mercuric chloride-induced nephrotoxicity in rats: Evidence by histological architecture. Toxicological & Environmental Chemistry, 95(9), 1581–1588.
Faille, C., Cunault, C., Dubois, T., & Benezech, T. (2018). Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innovative Food Science & Emerging Technologies, 4665–4673.
Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Science and Technology, 44(4), 793–810.
Namir, M., Rabie, M. A., Rabie, N. A., & Ramadan, M. F. (2018). Optimizing the addition of functional plant extracts and baking conditions to develop acrylamide-free pita bread. Journal of Food Protection, 81(10), 1696–1706.
pubmed: 30230373
Morsy, G. M., El Sayed, H. H., Hanna, E., & Abdel Rahman, M. K. (2008). Turmeric may protect cells from oxidative stress by acrylamide in-vivo. The Egyptian Journal of Forensic Sciences and Applied Toxicology, 4123–4129.
Yildizbayrak, N., & Erkan, M. (2019). Therapeutic effect of curcumin on acrylamide-induced apoptosis mediated by MAPK signaling pathway in Leydig cells. Journal of Biochemical and Molecular Toxicology, 33(7), e22326.
pubmed: 31081568
Yan, D., Yao, J., Liu, Y., Zhang, X., Wang, Y., Chen, X., et al. (2018). Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain, Behavior, and Immunity, 7166–7180.
Shan, X., Li, Y., Meng, X., Wang, P., Jiang, P., & Feng, Q. (2014). Curcumin and (−)-epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells. Food and Chemical Toxicology, 66, 194–202.
pubmed: 24508477
Hackler, L., Jr., Ózsvári, B., Gyuris, M., Sipos, P., Fábián, G., Molnár, E., et al. (2016). The curcumin analog C-150, influencing NF-κB, UPR and Akt/notch pathways has potent anticancer activity in vitro and in vivo. PLoS One, 11(3), e0149832.
pubmed: 26943907 pmcid: 4778904
Xu, Y., Wang, P., Xu, C., Shan, X., & Feng, Q. (2019). Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression. Journal of Biomedical Research, 33(3), 181–191.
pubmed: 28963442
Cao, J., Jiang, L., Geng, C., & Yao, X. (2009). Preventive effects of curcumin on acrylamide-induced DNA damage in HepG2 cells. Wei Sheng Yan Jiu, 38(4), 392–395.
pubmed: 19689063
Kurien, B. T. (2009). Comment on curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. Journal of Agricultural and Food Chemistry, 57(12), 5644–5646.
pubmed: 19530719
Cao, J., Liu, Y., Jia, L., Jiang, L. P., Geng, C. Y., Yao, X. F., et al. (2008). Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. Journal of Agricultural and Food Chemistry, 56(24), 12059–12063.
pubmed: 19012407
Senthilkumar, S., Raveendran, R., Madhusoodanan, S., Sundar, M., Shankar, S. S., Sharma, S., et al. (2020). Developmental and behavioural toxicity induced by acrylamide exposure and amelioration using phytochemicals in Drosophila melanogaster. Journal of Hazardous Materials, 394, 122–533.
Brotons, J. A., Olea-Serrano, M. F., Villalobos, M., Pedraza, V., & Olea, N. (1995). Xenoestrogens released from lacquer coatings in food cans. Environmental Health Perspectives, 103(6), 608–612.
pubmed: 7556016 pmcid: 1519121
Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., & Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 36(8), 1676–1680.
Vivacqua, A., Recchia, A. G., Fasanella, G., Gabriele, S., Carpino, A., Rago, V., et al. (2003). The food contaminants bisphenol A and 4-nonylphenol act as agonists for estrogen receptor α in MCF7 breast cancer cells. Endocrine, 22(3), 275–284.
pubmed: 14709801
Geens, T., Aerts, D., Berthot, C., Bourguignon, J.-P., Goeyens, L., Lecomte, P., et al. (2012). A review of dietary and non-dietary exposure to bisphenol-a. Food and Chemical Toxicology, 50(10), 3725–3740.
pubmed: 22889897
Kalender, S., Apaydin, F. G., & Kalender, Y. (2019). Testicular toxicity of orally administrated bisphenol A in rats and protective role of taurine and curcumin. Pakistan Journal of Pharmaceutical Sciences, 32(3), 1043–1047.
pubmed: 31278718
Akintunde, J. K., Farouk, A. A., & Mogbojuri, O. (2019). Metabolic treatment of syndrome linked with Parkinson’s disease and hypothalamus pituitary gonadal hormones by turmeric curcumin in Bisphenol-A induced neuro-testicular dysfunction of wistar rat. Biochemistry and Biophysics Reports, 1797–1107.
Uzunhisarcikli, M., & Aslanturk, A. (2019). Hepatoprotective effects of curcumin and taurine against bisphenol A-induced liver injury in rats. Environmental Science and Pollution Research International, 26(36), 37242–37253.
pubmed: 31745802
Tiwari, S. K., Agarwal, S., Tripathi, A., & Chaturvedi, R. K. (2016). Bisphenol-a mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical Wnt pathway. Molecular Neurobiology, 53(5), 3010–3029.
pubmed: 25963729
Bull, S., Burnett, K., Vassaux, K., Ashdown, L., Brown, T., & Rushton, L. (2014). Extensive literature search and provision of summaries of studies related to the oral toxicity of perfluoroalkylated substances (PFASs), their precursors and potential replacements in experimental animals and humans. Area 1: Data on toxicokinetics (absorption, distribution, metabolism, excretion) in in vitro studies, experimental animals and humans. Area 2: Data on toxicity in experimental animals. Area 3: Data on observations in humans. EFSA Supporting Publications, 11(4), 572E.
StockholmConvention Recommendations on the elimination of brominated diphenyl ethers from the waste stream and on risk reduction for perfluorooctane sulfonic acid (PFOS) and its salts and perfluorooctane sulfonyl fluoride (PFOSF). In: Fifth meeting of the conference of the parties 25–29 April, 2011, Geneva/Switzerland.
D’Hollander, W., de Voogt, P., De Coen, W., & Bervoets, L. (2010). Perfluorinated substances in human food and other sources of human exposure. In Reviews of environmental contamination and toxicology (Vol. 208, pp. 179–215). Springer.
Suja, F., Pramanik, B. K., & Zain, S. M. (2009). Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: A review paper. Water Science and Technology, 60(6), 1533–1544.
pubmed: 19759456
Andersen ME, Butenhoff JL, Chang SC, Farrar DG, Kennedy GL, Jr., Lau C et al. (2008) Perfluoroalkyl acids and related chemistries--toxicokinetics and modes of action. Toxicological Sciences 102(1):3–14.
Çelik, A., Eke, D., Ekinci, S. Y., & Yıldırım, S. (2013). The protective role of curcumin on perfluorooctane sulfonate-induced genotoxicity: Single cell gel electrophoresis and micronucleus test. Food and Chemical Toxicology, 53249–53255.
Eke, D., & Çelik, A. (2016). Curcumin prevents perfluorooctane sulfonate-induced genotoxicity and oxidative DNA damage in rat peripheral blood. Drug and Chemical Toxicology, 39(1), 97–103.
pubmed: 25950456
Espey MG, Miranda KM, Thomas DD, Xavier S, Citrin D, Vitek MP et al. (2002) A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Annals of the New York Academy of Sciences 962(1):195–206.
Swann, P., & Magee, P. (1968). Nitrosamine-induced carcinogenesis. The alkylation of nucleic acids of the rat by N-methyl-N-nitrosourea, dimethylnitrosamine, dimethyl sulphate and methyl methanesulphonate. Biochemical Journal, 110(1), 39–47.
pubmed: 5722690 pmcid: 1187106
Rector, R. S., Thyfault, J. P., Wei, Y., & Ibdah, J. A. (2008). Non-alcoholic fatty liver disease and the metabolic syndrome: An update. World journal of gastroenterology: WJG, 14(2), 185.
pubmed: 18186553 pmcid: 2675112
Tong, M., Neusner, A., Longato, L., Lawton, M., Wands, J. R., & de la Monte, S. M. (2009). Nitrosamine exposure causes insulin resistance diseases: Relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer's disease. Journal of Alzheimer's Disease, 17(4), 827–844.
pubmed: 20387270
Song, P., Wu, L., & Guan, W. (2015). Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients, 7(12), 9872–9895.
pubmed: 26633477 pmcid: 4690057
Sun, H., Yu, L., Wei, H., & Liu, G. (2012). A novel antihepatitis drug, bicyclol, prevents liver carcinogenesis in diethylnitrosamine-initiated and phenobarbital-promoted mice tumor model. BioMed Research International, 2012.
Lee, M. F., Tsai, M. L., Sun, P. P., Chien, L. L., Cheng, A. C., Ma, N. J., et al. (2013). Phyto-power dietary supplement potently inhibits dimethylnitrosamine-induced liver fibrosis in rats. Food & Function, 4(3), 470–475.
Chuang, S. E., Kuo, M. L., Hsu, C. H., Chen, C. R., Lin, J. K., Lai, G. M., et al. (2000). Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis, 21(2), 331–335.
pubmed: 10657978
Ahmed, H. H., Shousha, W. G., Shalby, A. B., El-Mezayen, H. A., Ismaiel, N. N., & Mahmoud, N. S. (2015). Implications of sex hormone receptor gene expression in the predominance of hepatocellular carcinoma in males: Role of natural products. Asian Pacific Journal of Cancer Prevention, 16(12), 4949–4954.
pubmed: 26163620
Chuang, S. E., Cheng, A. L., Lin, J. K., & Kuo, M. L. (2000). Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food and Chemical Toxicology, 38(11), 991–995.
pubmed: 11038236
Nasr, M., Selima, E., Hamed, O., & Kazem, A. (2014). Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice. European Journal of Pharmacology, 723, 267–275.
pubmed: 24291100
Zhao, X., Chen, Q., Li, Y., Tang, H., Liu, W., & Yang, X. (2015). Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. European Journal of Pharmaceutics and Biopharmaceutics, 93, 27–36.
pubmed: 25770771
Abouzied, M. M., Eltahir, H. M., Abdel Aziz, M. A., Ahmed, N. S., Abd El-Ghany, A. A., Abd El-Aziz, E. A., et al. (2015). Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biology, 36(3), 1763–1771.
pubmed: 25519685
Fujise, Y., Okano, J., Nagahara, T., Abe, R., Imamoto, R., & Murawaki, Y. (2012). Preventive effect of caffeine and curcumin on hepato-carcinogenesis in diethylnitrosamine-induced rats. International Journal of Oncology, 40(6), 1779–1788.
pubmed: 22293778
Patial, V., S, M., Sharma, S., Pratap, K., Singh, D., & Padwad, Y. S. (2015). Synergistic effect of curcumin and piperine in suppression of DENA-induced hepatocellular carcinoma in rats. Environmental Toxicology and Pharmacology, 40(2), 445–452.
pubmed: 26278679
Kadasa, N. M., Abdallah, H., Afifi, M., & Gowayed, S. (2015). Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats. Asian Pacific Journal of Cancer Prevention, 16(1), 103–108.
pubmed: 25640336
Khan, H., Ullah, H., & Nabavi, S. M. (2019). Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food and Chemical Toxicology, 124, 182–191.
pubmed: 30529260
Farombi, E. O., Shrotriya, S., Na, H.-K., Kim, S.-H., & Surh, Y.-J. (2008). Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology, 46(4), 1279–1287.
pubmed: 18006204
Ghosh, D., Choudhury, S. T., Ghosh, S., Mandal, A. K., Sarkar, S., Ghosh, A., et al. (2012). Nanocapsulated curcumin: Oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chemico-Biological Interactions, 195(3), 206–214.
pubmed: 22197969
Sreepriya, M., & Bali, G. (2005). Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia, 76(6), 549–555.
pubmed: 16009505
Tork, O. M., Khaleel, E. F., & Abdelmaqsoud, O. M. (2015). Altered cell to cell communication, autophagy and mitochondrial dysfunction in a model of hepatocellular carcinoma: Potential protective effects of curcumin and stem cell therapy. Asian Pacific Journal of Cancer Prevention, 16(18), 8271–8279.
pubmed: 26745072
Sreepriya, M., & Bali, G. (2006). Effects of administration of Embelin and curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Molecular and Cellular Biochemistry, 284(1–2), 49–55.
pubmed: 16477385
Huang, C. Z., Huang, W. Z., Zhang, G., & Tang, D. L. (2013). In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN. Molecular Biology Reports, 40(10), 5825–5831.
pubmed: 24114697
Huang, A. C., Lin, S. Y., Su, C. C., Lin, S. S., Ho, C. C., Hsia, T. C., et al. (2008). Effects of curcumin on N-bis(2-hydroxypropyl) nitrosamine (DHPN)-induced lung and liver tumorigenesis in BALB/c mice in vivo. Vivo, 22(6), 781–785.
Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L., & Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50(10), 3646–3665.
pubmed: 22889895
Waly, M. I., Al-Bulushi, I. M., Al-Hinai, S., Guizani, N., Al-Malki, R. N., & Rahman, M. S. (2018). The protective effect of curcumin against nitrosamine-induced gastric oxidative stress in rats. Preventive Nutrition and Food Science, 23(4), 288–293.
pubmed: 30675457 pmcid: 6342541
Ushida, J., Sugie, S., Kawabata, K., Pham, Q. V., Tanaka, T., Fujii, K., et al. (2000). Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Japanese Journal of Cancer Research, 91(9), 893–898.
pubmed: 11011116 pmcid: 5926445
Azuine, M. A., & Bhide, S. V. (1994). Adjuvant chemoprevention of experimental cancer: Catechin and dietary turmeric in forestomach and oral cancer models. Journal of Ethnopharmacology, 44(3), 211–217.
pubmed: 7898128
Cancer IAfRo. (2012). A review of human carcinogens: Personal habits and indoor combustions. World Health Organization.
Collins, J., Brown, J., Alexeeff, G., & Salmon, A. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28(1), 45–54.
pubmed: 9784432
Chien, Y.-C., & Yeh, C.-T. (2012). Excretion kinetics of urinary 3-hydroxybenzo [a] pyrene following dietary exposure to benzo [a] pyrene in humans. Archives of Toxicology, 86(1), 45–53.
pubmed: 21785897
Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N., et al. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control, 22(12), 2028–2035.
Athar, M., Khan, W. A., & Mukhtar, H. (1989). Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Research, 49(21), 5784–5788.
pubmed: 2507136
Vauhkonen, M., Kuusi, T., & Kinnunen, P. K. (1980). Serum and tissue distribution of benzo [a] pyrene from intravenously injected chylomicrons in rat in vivo. Cancer Letters, 11(2), 113–119.
pubmed: 7459839
Withey, J., Shedden, J., Law, F., & Abedini, S. (1993). Distribution of benzo [a] pyrene in pregnant rats following inhalation exposure and a comparison with similar data obtained with pyrene. Journal of Applied Toxicology, 13(3), 193–202.
pubmed: 8326089
Kim, K. S., Kim, N. Y., Son, J. Y., Park, J. H., Lee, S. H., Kim, H. R., et al. (2019). Curcumin ameliorates benzo [a] pyrene-induced DNA damages in stomach tissues of Sprague-Dawley rats. International Journal of Molecular Sciences, 20(22), 5533.
pmcid: 6888507
Gao, M., Li, Y., Sun, Y., Long, J., Kong, Y., Yang, S., et al. (2011). A common carcinogen benzo [a] pyrene causes p53 overexpression in mouse cervix via DNA damage. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 724(1–2), 69–75.
Garg, R., Gupta, S., & Maru, G. B. (2008). Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: Mechanism of its anti-initiating action. Carcinogenesis, 29(5), 1022–1032.
pubmed: 18321868
Thapliyal, R., Deshpande, S. S., & Maru, G. B. (2001). Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. Journal of Environmental Pathology, Toxicology and Oncology, 20(1), 59–63.
pubmed: 11215708
Azuine, M. A., Kayal, J. J., & Bhide, S. V. (1992). Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [alpha] pyrene-induced genotoxicity and carcinogenicity. Journal of Cancer Research and Clinical Oncology, 118(6), 447–452.
pubmed: 1618892
Mukundan, M. A., Chacko, M. C., Annapurna, V. V., & Krishnaswamy, K. (1993). Effect of turmeric and curcumin on BP-DNA adducts. Carcinogenesis, 14(3), 493–496.
pubmed: 8453726
Huang, M. T., Newmark, H. L., & Frenkel, K. (1997). Inhibitory effects of curcumin on tumorigenesis in mice. Journal of Cellular Biochemistry. Supplement, 2726–2734.
Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L., Reuhl, K. R., & Conney, A. H. (1994). Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Research, 54(22), 5841–5847.
pubmed: 7954412
Deshpande, S. S., & Maru, G. B. (1995). Effects of curcumin on the formation of benzo[a]pyrene derived DNA adducts in vitro. Cancer Letters, 96(1), 71–80.
pubmed: 7553610
Ibrahim, M. A., Elbehairy, A. M., Ghoneim, M. A., & Amer, H. A. (2007). Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene. Z Naturforsch C. Journal of Biosciences, 62(3–4), 215–222.
pubmed: 17542487
Singh, S. V., Hu, X., Srivastava, S. K., Singh, M., Xia, H., Orchard, J. L., et al. (1998). Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis, 19(8), 1357–1360.
pubmed: 9744529
Deshpande, S. S., Ingle, A. D., & Maru, G. B. (1997). Inhibitory effects of curcumin-free aqueous turmeric extract on benzo[a]pyrene-induced forestomach papillomas in mice. Cancer Letters, 118(1), 79–85.
pubmed: 9310263
Banerjee, B., Chakraborty, S., Ghosh, D., Raha, S., Sen, P. C., & Jana, K. (2016). Benzo(a)pyrene induced p53 mediated male germ cell apoptosis: Synergistic protective effects of curcumin and resveratrol. Frontiers in Pharmacology, 7245.
Nair, P., Malhotra, A., & Dhawan, D. K. (2015). Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Molecular and Cellular Biochemistry, 400(1–2), 51–56.
pubmed: 25359171
Huang, M. T., Wang, Z. Y., Georgiadis, C. A., Laskin, J. D., & Conney, A. H. (1992). Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7, 12-dimethylbenz[a]anthracene. Carcinogenesis, 13(11), 2183–2186.
pubmed: 1423891
Almatroodi, S. A., Alrumaihi, F., Alsahli, M. A., Alhommrani, M. F., Khan, A., & Rahmani, A. H. (2020). Curcumin, an active constituent of turmeric spice: Implication in the prevention of lung injury induced by benzo(a) pyrene (BaP) in rats. Molecules, 25(3).
Puliyappadamba, V. T., Thulasidasan, A. K., Vijayakurup, V., Antony, J., Bava, S. V., Anwar, S., et al. (2015). Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis. BioFactors, 41(6), 431–442.
pubmed: 26643788
Zhang, P., & Zhang, X. (2018). Stimulatory effects of curcumin and quercetin on posttranslational modifications of p53 during lung carcinogenesis. Human & Experimental Toxicology, 37(6), 618–625.
Liu, Y., Wu, Y. M., & Zhang, P. Y. (2015). Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. European Review for Medical and Pharmacological Sciences, 19(9), 1736–1743.
pubmed: 26004618
Malhotra, A., Nair, P., & Dhawan, D. K. (2012). Curcumin and resveratrol in combination modulates benzo(a)pyrene-induced genotoxicity during lung carcinogenesis. Human & Experimental Toxicology, 31(12), 1199–1206.
Zhu, W., Cromie, M. M., Cai, Q., Lv, T., Singh, K., & Gao, W. (2014). Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS One, 9(3), e92992.
pubmed: 24664296 pmcid: 3963982
Sehgal, A., Kumar, M., Jain, M., & Dhawan, D. K. (2011). Combined effects of curcumin and piperine in ameliorating benzo(a)pyrene induced DNA damage. Food and Chemical Toxicology, 49(11), 3002–3006.
pubmed: 21827816
Sehgal, A., Kumar, M., Jain, M., & Dhawan, D. K. (2013). Modulatory effects of curcumin in conjunction with piperine on benzo(a)pyrene-mediated DNA adducts and biotransformation enzymes. Nutrition and Cancer, 65(6), 885–890.
pubmed: 23909733
Sehgal, A., Kumar, M., Jain, M., & Dhawan, D. K. (2012). Piperine as an adjuvant increases the efficacy of curcumin in mitigating benzo(a)pyrene toxicity. Human & Experimental Toxicology, 31(5), 473–482.
Liu, D., He, B., Lin, L., Malhotra, A., & Yuan, N. (2019). Potential of curcumin and resveratrol as biochemical and biophysical modulators during lung cancer in rats. Drug and Chemical Toxicology, 42(3), 328–334.
pubmed: 30484721
Liu, Y., Wu, Y. M., Yu, Y., Cao, C. S., Zhang, J. H., Li, K., et al. (2015). Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice. Human & Experimental Toxicology, 34(6), 620–627.
Malhotra, A., Nair, P., & Dhawan, D. K. (2010). Modulatory effects of curcumin and resveratrol on lung carcinogenesis in mice. Phytotherapy Research, 24(9), 1271–1277.
pubmed: 20041413
Shirani, K., Zanjani, B. R., Mahmoudi, M., Jafarian, A. H., Hassani, F. V., Giesy, J. P., et al. (2018). Immunotoxicity of aflatoxin M1: As a potent suppressor of innate and acquired immune systems in a subacute study. Journal of the Science of Food and Agriculture, 98(15), 5884–5892.
pubmed: 30014474
Liu, Z., Gao, J., & Yu, J. (2006). Aflatoxins in stored maize and rice grains in Liaoning Province, China. Journal of Stored Products Research, 42(4), 468–479.
Shirani, K., Riahi Zanjani, B., Mehri, S., Razavi-Azarkhiavi, K., Badiee, A., Hayes, A. W., et al. (2019). miR-155 influences cell-mediated immunity in Balb/c mice treated with aflatoxin M1. Drug and Chemical Toxicology, 1–8.
Soni, K., Rajan, A., & Kuttan, R. (1993). Inhibition of aflatoxin-induced liver damage in ducklings by food additives. Mycotoxin Research, 9(1), 22–26.
pubmed: 23606063
Yarru, L., Settivari, R., Gowda, N., Antoniou, E., Ledoux, D., & Rottinghaus, G. (2009). Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poultry Science, 88(12), 2620–2627.
pubmed: 19903961
Raja, L., Singh, C. K., Mondal, M., Nety, S., & Koley, K. (2017). Ameliorative effect of Curcuma longa in Aflatoxicosis induced hematological and histopathological changes in broiler birds. International Journal of Current Microbiology and Applied Sciences, 6(10), 288–301.
Gogoi, R., Sapcota, D., & Gohain, A. (2010). Efficacy of dietary Curcuma longa in aflatoxicosis in broilers. Indian Veterinary Journal, 87(7), 681–683.
Soliman, G., Hashem, A., & Arafa, M. (2012). Protective effect of Curcuma longa or Nigella sativa on aflatoxin B1-induced hepato-toxicity in rats in relation to food safety on public health. The Medical Journal of Cairo University, 80(2).
Gholami-Ahangaran, M., Rangsaz, N., & Azizi, S. (2016). Evaluation of turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. Pharmaceutical Biology, 54(5), 780–787.
pubmed: 26450181
Dos Anjos, F., Ledoux, D., Rottinghaus, G., & Chimonyo, M. (2015). Efficacy of adsorbents (bentonite and diatomaceous earth) and turmeric (Curcuma longa) in alleviating the toxic effects of aflatoxin in chicks. British Poultry Science, 56(4), 459–469.
pubmed: 25990012
Rangsaz, N., & Ahangaran, M. G. (2011). Evaluation of turmeric extract on performance indices impressed by induced aflatoxicosis in broiler chickens. Toxicology and Industrial Health, 27(10), 956–960.
pubmed: 21450929
Mathuria, N., & Verma, R. J. (2007). Aflatoxin induced hemolysis and its amelioration by turmeric extracts and curcumin in vitro. Acta Poloniae Pharmaceutica, 64(2), 165–168.
pubmed: 17665866
El-Mahalaway, A. M. (2015). Protective effect of curcumin against experimentally induced aflatoxicosis on the renal cortex of adult male albino rats: A histological and immunohisochemical study. International Journal of Clinical and Experimental Pathology, 8(6), 6019.
pubmed: 26261479 pmcid: 4525813
Soni, K., Lahiri, M., Chackradeo, P., Bhide, S., & Kuttan, R. (1997). Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Letters, 115(2), 129–133.
pubmed: 9149115
Abdel-Wahhab, M. A., Salman, A. S., Ibrahim, M. I., El-Kady, A. A., Abdel-Aziem, S. H., Hassan, N. S., et al. (2016). Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver. Food and Chemical Toxicology, 94, 159–171.
pubmed: 27288928
Nayak, S., & Sashidhar, R. (2010). Metabolic intervention of aflatoxin B1 toxicity by curcumin. Journal of Ethnopharmacology, 127(3), 641–644.
pubmed: 20015472
El-Agamy, D. S. (2010). Comparative effects of curcumin and resveratrol on aflatoxin B 1-induced liver injury in rats. Archives of Toxicology, 84(5), 389–396.
pubmed: 20112103
El-Bahr, S. (2015). Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1. Phytotherapy Research, 29(1), 134–140.
pubmed: 25639897
Ismaiel, A. A., El-Denshary, E. S., El-Nekeety, A. A., Al-Yamani, A., Gad, S., Hassan, N. S., et al. (2015). Ameliorative effects of curcumin nanoparticles on hepatotoxicity induced by zearalenone mycotoxin. Global. Journal de Pharmacologie, 9(3), 234–245.
Qin, X., Cao, M., Lai, F., Yang, F., Ge, W., Zhang, X., et al. (2015). Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS One, 10(6).
Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Asili, J., Nemati, S. H., Goumenou, M., et al. (2018). Risk assessment of exposure to aflatoxin B1 and ochratoxin A through consumption of different Pistachio (Pistacia vera L.) cultivars collected from four geographical regions of Iran. Environmental Toxicology and Pharmacology, 61, 61–66.
pubmed: 29852370
Clark, H. A., & Snedeker, S. M. (2006). Ochratoxin A: Its cancer risk and potential for exposure. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 9(3), 265–296.
pubmed: 16621780
Li, F., & Ji, R. (2003). Ochratoxin A and human health. Wei Sheng Yan Jiu, 32(2), 172–175.
pubmed: 12793017
Rani, M., Reddy, A., Reddy, G., & Raj, M. (2009). Oxidative stress due to ochratoxin and T-2 toxin either alone or in combination and evaluation of protective role of Curcuma longa, Zingiber officinale, toxichek and activated charcoal. Toxicology International, 16(1), 63.
Kiran, D., Gupta, M., Singh, K., & Kumar, S. (2017). Ameliorative effect of powdered rhizome of Curcuma longa on ochratoxin A induced nephrotoxicity in broilers. Indian Journal of Veterinary Pathology, 41(3), 201–207.
Chavez, C., & Ledoux, D. R. (2008). Efficacy of curcumin in ameliorating the toxic effects of ochratoxin A and aflatoxin in young broilers. In 2008 Undergraduate Research and Creative Achievements Forum (MU), University of Missouri--Columbia. Office of Undergraduate Research.
Qin, X., Cao, M., Lai, F., Yang, F., Ge, W., Zhang, X., et al. (2015). Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS One, 10(6), e0127551.
pubmed: 26030649 pmcid: 4452521
Ismaiel, A. A., El-Denshary, E. S., El-Nekeety, A. A., Al-Yamani, A., Gad, S., Hassan, N. S., et al. (2015). Ameliorative effects of curcumin nanoparticles on hepatotoxicity induced by zearalenone mycotoxin. Global Journal of Pharmacology, 9(3), 234–245.

Auteurs

Bahareh Sadat Yousefsani (BS)

Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.
School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.

Majid Dadmehr (M)

Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.
School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.

Kobra Shirani (K)

Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Amirhossein Jamshidi (A)

Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.
School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.

Thozhukat Sathyapalan (T)

Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK.

Amirhossein Sahebkar (A)

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. sahebkara@mums.ac.ir.
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. sahebkara@mums.ac.ir.
School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. sahebkara@mums.ac.ir.

Articles similaires

Curcumin Spinal Cord Injuries Humans Animals Neural Stem Cells
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

pH-responsive magnetic CuFe

Nadia Fattahi, Faranak Aghaz, Aram Rezaei et al.
1.00
Humans Hydrogen-Ion Concentration Breast Neoplasms Lignin Female
Animals Larva Insecticides Methylene Blue Anopheles

Classifications MeSH