Coupling immuno-magnetic capture with LC-MS/MS(MRM) as a sensitive, reliable, and specific assay for SARS-CoV-2 identification from clinical samples.


Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 30 09 2021
accepted: 03 12 2021
revised: 21 11 2021
pubmed: 5 1 2022
medline: 3 2 2022
entrez: 4 1 2022
Statut: ppublish

Résumé

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 10

Identifiants

pubmed: 34981149
doi: 10.1007/s00216-021-03831-5
pii: 10.1007/s00216-021-03831-5
pmc: PMC8723902
doi:

Substances chimiques

Antibodies, Viral 0
Biomarkers 0
Peptides 0

Types de publication

Journal Article Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1949-1962

Informations de copyright

© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.
doi: 10.1038/s41586-020-2012-7
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.
doi: 10.1016/S0140-6736(20)30251-8
Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev Med Virol. 2020;30(3):e2106.
doi: 10.1002/rmv.2106
Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 2020;39(3):198–216.
doi: 10.1007/s10930-020-09901-4
Grunewald ME, Fehr AR, Athmer J, Perlman S. The coronavirus nucleocapsid protein is ADP-ribosylated. Virology. 2018;517:62–8.
doi: 10.1016/j.virol.2017.11.020
Barlev-Gross M, Weiss S, Ben-Shmuel A, Sittner A, Eden K, Mazuz N, et al. Spike vs nucleocapsid SARS-CoV-2 antigen detection: application in nasopharyngeal swab specimens. Anal Bioanal Chem, 2021;1–10.
Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: recent advances, prevention, and treatment. Int J Environ Res Public Health. 2020;17(7).
Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, et al. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis. 2020;20(10):1151–60.
doi: 10.1016/S1473-3099(20)30457-6
Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020.
Israeli O, Beth-Din A, Paran N, Stein D, Lazar S, Weiss S, et al. Evaluating the efficacy of RT-qPCR SARS-CoV-2 direct approaches in comparison to RNA extraction. Int J Infec Dis. 2020;99:352–4.
doi: 10.1016/j.ijid.2020.08.015
Huang CG, Lee KM, Hsiao MJ, Yang SL, Huang PN, Gong YN, et al. Culture-based virus isolation to evaluate potential infectivity of clinical specimens tested for COVID-19. J Clin Microbiol. 2020;58(8).
Pekosz A, Parvu V, Li M, Andrews JC, Manabe YC, Kodsi S, et al. Antigen-based testing but not real-time polymerase chain reaction correlates with severe acute respiratory syndrome coronavirus 2 viral culture. Clin Infect Dis. 2021.
Li C, Ren L. Recent progress on the diagnosis of 2019 novel coronavirus. Transbound Emerg Dis. 2020;67(4):1485–91.
doi: 10.1111/tbed.13620
Wiseman J, D’Amico TA, Zawadzka S, Anyimadu H. False negative SARS-CoV-2 PCR - a case report and literature review. Respir Med Case Rep. 2020;31:101140.
pubmed: 32714821 pmcid: 7369610
Woloshin S, Patel N, Kesselheim AS. False negative tests for SARS-CoV-2 infection - challenges and implications. N Engl J Med. 2020;383(6):e38.
doi: 10.1056/NEJMp2015897
Kanji JN, Zelyas N, MacDonald C, Pabbaraju K, Khan MN, Prasad A, et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol J. 2021;18(1):13.
doi: 10.1186/s12985-021-01489-0
Gao J, Quan L. Current status of diagnostic testing for SARS-CoV-2 infection and future developments: a review. Med Sci Monit. 2020;26:e928552.
pubmed: 33332288 pmcid: 7754691
Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61(1):100–11.
doi: 10.1373/clinchem.2014.221770
Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep. 2014;4:6803.
doi: 10.1038/srep06803
Krokhin O, Li Y, Andonov A, Feldmann H, Flick R, Jones S, et al. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol Cell Proteomics. 2003;2(5):346–56.
doi: 10.1074/mcp.M300048-MCP200
Sampath R, Hofstadler SA, Blyn LB, Eshoo MW, Hall TA, Massire C, et al. Rapid identification of emerging pathogens: coronavirus. Emerg Infect Dis. 2005;11(3):373–9.
doi: 10.3201/eid1103.040629
Kang X, Xu Y, Wu X, Liang Y, Wang C, Guo J, et al. Proteomic fingerprints for potential application to early diagnosis of severe acute respiratory syndrome. Clin Chem. 2005;51(1):56–64.
doi: 10.1373/clinchem.2004.032458
Ihling C, Tänzler D, Hagemann S, Kehlen A, Hüttelmaier S, Arlt C, et al. Mass spectrometric identification of SARS-CoV-2 proteins from gargle solution samples of COVID-19 patients. J Proteome Res. 2020.
Cardozo KHM, Lebkuchen A, Okai GG, Schuch RA, Viana LG, Olive AN, et al. Establishing a mass spectrometry-based system for rapid detection of SARS-CoV-2 in large clinical sample cohorts. Nat Commun. 2020;11(1):6201.
doi: 10.1038/s41467-020-19925-0
Saadi J, Oueslati S, Bellanger L, Gallais F, Dortet L, Roque-Afonso AM, et al. Quantitative assessment of SARS-CoV-2 virus in nasopharyngeal swabs stored in transport medium by a straightforward LC-MS/MS assay targeting nucleocapsid, membrane, and spike proteins. J Proteome Res. 2021;20(2):1434–43.
doi: 10.1021/acs.jproteome.0c00887
Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, et al. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics. 2021;e2000279.
Gouveia D, Grenga L, Gaillard JC, Gallais F, Bellanger L, Pible O, et al. Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics. 2020;20(14):e2000107.
doi: 10.1002/pmic.202000107
Gouveia D, Miotello G, Gallais F, Gaillard J-C, Debroas S, Bellanger L, et al. Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: a proof-of-concept focused on a 3 min mass spectrometry window. J Proteome Res. 2020;19(11):4407–16.
doi: 10.1021/acs.jproteome.0c00535
Schuster O, Zvi A, Rosen O, Achdout H, Ben-Shmuel A, Shifman O, et al. Specific and rapid SARS-CoV-2 identification based on LC-MS/MS analysis. ACS Omega. 2021;6(5):3525–34.
doi: 10.1021/acsomega.0c04691
Grossegesse M, Hartkopf F, Nitsche A, Schaade L, Doellinger J, Muth T. Perspective on proteomics for virus detection in clinical samples. J Proteome Res. 2020;19(11):4380–8.
doi: 10.1021/acs.jproteome.0c00674
Zhang M, Li Y, Jing H, Wang N, Wu S, Wang Q, et al. Development of polyclonal-antibody-coated immunomagnetic beads for separation and detection of koi herpesvirus in large-volume samples. Arch Virol. 2020;165(4):973–6.
doi: 10.1007/s00705-020-04557-y
Zhu W, Yang X, Zhou Y, Yan Y. Immunomagnetic enrichment to evaluate the role of home environment specimens in transmission of enterovirus 71. Exp Ther Med. 2018;16(3):2355–62.
pubmed: 30186479 pmcid: 6122488
Jothikumar N, Cliver DO, Mariam TW. Immunomagnetic capture PCR for rapid concentration and detection of hepatitis A virus from environmental samples. Appl Environ Microbiol. 1998;64(2):504–8.
doi: 10.1128/AEM.64.2.504-508.1998
de Almeida FG, Vanzolini KL, Cass QB. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing. J Pharm Biomed Anal. 2017;132:159–64.
doi: 10.1016/j.jpba.2016.10.006
Renuse S, Vanderboom PM, Maus AD, Kemp JV, Gurtner KM, Madugundu AK, et al. A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine. 2021;69:103465–103465.
doi: 10.1016/j.ebiom.2021.103465
oy-Porat T, Makdasi E, Alcalay R, Mechaly A, Levy Y, Bercovich-Kinori A, et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nat Commun. 2020;11(1): 4303.
Makdasi E, Levy Y, Alcalay R, Noy-Porat T, Zahavy E, Mechaly A, et al. Neutralizing monoclonal anti-SARS-CoV-2 antibodies isolated from immunized rabbits define novel vulnerable spike-protein epitope. Viruses. 2021;13(4).
Feldberg L, Schuster O, Elhanany E, Laskar O, Yitzhaki S, Gura S. Rapid and sensitive identification of ricin in environmental samples based on lactamyl agarose beads using LC-MS/MS (MRM). J Mass Spectrom. 2020;55(1):e4482.
doi: 10.1002/jms.4482
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3).
Commission E. 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 2002.
Smith KP, Cheng A, Chopelas A, DuBois-Coyne S, Mezghani I, Rodriguez S, et al. Large-scale, in-house production of viral transport media to support SARS-CoV-2 PCR testing in a multihospital health care network during the COVID-19 pandemic. J Clin Microbiol. 2020;58(8).

Auteurs

Ofir Schuster (O)

Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel. ofirsc@iibr.gov.il.

Yafit Atiya-Nasagi (Y)

Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel.

Osnat Rosen (O)

Department of Biotechnology, IIBR, Ness Ziona, Israel.

Anat Zvi (A)

Department of Biochemistry and Molecular Genetics, IIBR, Ness Ziona, Israel.

Itai Glinert (I)

Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel.

Amir Ben Shmuel (A)

Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel.

Shay Weiss (S)

Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel.

Orly Laskar (O)

Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel.

Liron Feldberg (L)

Department of Analytical Chemistry, IIBR, Ness Ziona, Israel. lironf@iibr.gov.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH