Increased Chlormethine-Induced DNA Double-Stranded Breaks in Malignant T Cells from Mycosis Fungoides Skin Lesions.
CL, chlormethine
CTCL, cutaneous T-cell lymphoma
DSB, double-stranded break
FBS, fetal bovine serum
HRR, homologous recombination repair
MF, mycosis fungoides
PMA, phorbol 12-myristate 13-acetate
Journal
JID innovations : skin science from molecules to population health
ISSN: 2667-0267
Titre abrégé: JID Innov
Pays: Netherlands
ID NLM: 101776173
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
02
02
2021
revised:
02
09
2021
accepted:
03
09
2021
entrez:
3
1
2022
pubmed:
4
1
2022
medline:
4
1
2022
Statut:
epublish
Résumé
Mycosis fungoides (MF) is a type of cutaneous T-cell lymphoma. Chlormethine (CL) is recommended as first-line therapy for MF, with a major purpose to kill tumor cells through DNA alkylation. To study the extent of treatment susceptibility and tumor specificity, we investigated the gene expression of different DNA repair pathways, DNA double-stranded breaks, and tumor cell proliferation of clonal TCR Vβ+ tumor cell populations in cutaneous T-cell lymphoma skin cells on direct exposure to CL. Healthy human T cells were less susceptible to CL exposure than two T-lymphoma cell lines, resulting in higher proportions of viable cells. Interestingly, in T cells from MF lesions, we observed a downregulation of several important DNA repair pathways, even complete silencing of
Identifiants
pubmed: 34977846
doi: 10.1016/j.xjidi.2021.100069
pii: S2667-0267(21)00070-9
pmc: PMC8683611
doi:
Types de publication
Journal Article
Langues
eng
Pagination
100069Informations de copyright
© 2021 The Authors.
Références
Br J Dermatol. 2019 Nov;181(5):1066-1068
pubmed: 31004508
Expert Rev Clin Pharmacol. 2014 Sep;7(5):591-7
pubmed: 25068889
Br J Dermatol. 2020 Mar;182(3):770-779
pubmed: 31049926
JAMA. 1984 May 4;251(17):2255-61
pubmed: 6368885
J Invest Dermatol. 2021 Jun;141(6):1601-1604.e2
pubmed: 33347924
Front Med (Lausanne). 2020 Jun 25;7:290
pubmed: 32714935
J Am Acad Dermatol. 2017 Oct;77(4):719-727
pubmed: 28709694
Blood. 2019 Apr 18;133(16):1703-1714
pubmed: 30635287
Br J Dermatol. 2010 Sep;163(3):564-71
pubmed: 20408834
Nucleic Acids Res. 2012 Nov 1;40(20):10263-73
pubmed: 22941639
Dermatol Ther. 2003;16(4):288-98
pubmed: 14686971
Ann Oncol. 2018 Oct 1;29(Suppl 4):iv30-iv40
pubmed: 29878045
JAMA Dermatol. 2013 Jan;149(1):25-32
pubmed: 23069814
Dermatology. 2021 Jun 4;:1-11
pubmed: 34091453
Eur J Cancer. 2017 May;77:57-74
pubmed: 28365528
Oncotarget. 2018 Dec 28;9(102):37647-37661
pubmed: 30701021
Oncoimmunology. 2020 Mar 18;9(1):1738797
pubmed: 32760603
Int Arch Allergy Immunol. 2020;181(10):733-745
pubmed: 32690848
Adv Immunol. 2012;116:175-204
pubmed: 23063077
Curr Opin Oncol. 2015 Mar;27(2):128-33
pubmed: 25594623
J Invest Dermatol. 2006 May;126(5):1059-70
pubmed: 16484986
Cancer Manag Res. 2019 Mar 20;11:2241-2251
pubmed: 30962713
JAAD Case Rep. 2020 Jun 03;6(9):878-881
pubmed: 32904169
Nat Genet. 2015 Sep;47(9):1011-9
pubmed: 26192916
Blood. 2005 May 15;105(10):3768-85
pubmed: 15692063
Br J Dermatol. 2019 Aug;181(2):350-357
pubmed: 30267549
Br J Dermatol. 2021 Apr;184(4):722-730
pubmed: 32479678
Blood. 2016 May 19;127(20):2375-90
pubmed: 26980727
Open Biol. 2015 Apr;5(4):150018
pubmed: 25833379
J Am Acad Dermatol. 2013 Jul;69(1):61-5
pubmed: 23453243
Blood. 2010 Aug 5;116(5):767-71
pubmed: 20484084
J Am Acad Dermatol. 2020 Sep;83(3):928-930
pubmed: 32089294