Impact of GAD65 and/or GAD67 deficiency on perinatal development in rats.


Journal

FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484

Informations de publication

Date de publication:
02 2022
Historique:
revised: 26 11 2021
received: 03 09 2021
accepted: 13 12 2021
entrez: 31 12 2021
pubmed: 1 1 2022
medline: 13 1 2022
Statut: ppublish

Résumé

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1

Identifiants

pubmed: 34972242
doi: 10.1096/fj.202101389R
doi:

Substances chimiques

Glutamate Decarboxylase EC 4.1.1.15
glutamate decarboxylase 1 EC 4.1.1.15
glutamate decarboxylase 2 EC 4.1.1.15

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e22123

Informations de copyright

© 2021 Federation of American Societies for Experimental Biology.

Références

Roberts E, Kuriyama K. Biochemical-physiology correlations in studies of the γ-aminobutyric acid system. Brain Res. 1968;8:1-35. doi:10.1016/0006-8993(68)90170-4
Seiler N, Al-Therib MJ. Putrescine catabolism in mammalian brain. Biochem J. 1974;144:29-35. doi:10.1042/bj1440029
Ji F, Kanbara N, Obata K. GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase. Neurosci Res. 1999;33:187-194. doi:10.1016/s0168-0102(99)00011-5
Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7:91-100. doi:10.1016/0896-6273(91)90077-d
Bu DF, Erlander MG, Hitz BC, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA. 1992;89:2115-2119. doi:10.1073/pnas.89.6.2115
Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci. 1998;19:500-505. doi:10.1016/s0165-6147(98)01270-x
Martin DL, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem. 1993;60:395-407. doi:10.1111/j.1471-4159.1993.tb03165.x
Jin H, Wu H, Osterhaus G, et al. Demonstration of functional coupling between gamma-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc Natl Acad Sci USA. 2003;100:4293-4298. doi:10.1073/pnas.0730698100
Asada H, Kawamura Y, Maruyama K, et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA. 1997;94:6496-6499. doi:10.1073/pnas.94.12.6496
Stork O, Ji F-Y, Kaneko K, et al. Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res. 2000;865:45-58. doi:10.1016/s0006-8993(00)02206-x
Müller I, Çalışkan G, Stork O. The GAD65 knock out mouse-a model for GABAergic processes in fear- and stress-induced psychopathology. Genes Brain Behav. 2015;14:37-45. doi:10.1111/gbb.12188
Glausier JR, Kimoto S, Fish KN, Lewis DA. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia. Biol Psychiatry. 2015;77:167-176. doi:10.1016/j.biopsych.2014.05.010
Addington AM, Gornick M, Duckworth J, et al. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry. 2005;10:581-588. doi:10.1038/sj.mp.4001599
Colic L, Li M, Demenescu LR, et al. GAD65 promoter polymorphism rs2236418 modulates harm avoidance in women via inhibition/excitation balance in the rostral ACC. J Neurosci. 2018;38:5067-5077. doi:10.1523/jneurosci.1985-17.2018
Chatron N, Becker F, Morsy H, et al. Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy. Brain. 2020;143:1447-1461. doi:10.1093/brain/awaa085
Rosenthal N, Brown S. The mouse ascending: perspectives for human-disease models. Nat Cell Biol. 2007;9:993-999. doi:10.1038/ncb437
Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9:1079-1087. doi:10.1242/dmm.026120
Dracheva S, Elhakem SL, McGurk SR, Davis KL, Haroutunian V. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res. 2004;76:581-592. doi:10.1002/jnr.20122
Kakizaki T, Ohshiro T, Itakura M, et al. Rats deficient in the GAD65 isoform exhibit epilepsy and premature lethality. FASEB J. 2021;35:e21224. doi:10.1096/fj.202001935R
Kakizaki T, Oriuchi N, Yanagawa Y. GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice. Neuroscience. 2015;288:86-93. doi:10.1016/j.neuroscience.2014.12.030
Fujihara K, Yamada K, Ichitani Y, et al. CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: implications for schizophrenia. Transl Psychiatry. 2020;10:426. doi:10.1038/s41398-020-01108-6
Fujihara K, Sato T, Miyasaka Y, Mashimo T, Yanagawa Y. Genetic deletion of the 67-kDa isoform of glutamate decarboxylase alters conditioned fear behavior in rats. FEBS Open Bio. 2021;11:340-353. doi:10.1002/2211-5463.13065
Eliasson MJ, McCaffery P, Baughman RW, Dräger UC. A ventrodorsal GABA gradient in the embryonic retina prior to expression of glutamate decarboxylase. Neuroscience. 1997;79:863-869. doi:10.1016/s0306-4522(97)00032-8
Yamasaki EN, Barbosa VD, De Mello FG, Hokoc JN. GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development. Int J Dev Neurosci. 1999;17:201-213. doi:10.1016/s0736-5748(99)00002-7
Hokoç JN, Ventura AL, Gardino PF, De Mello FG. Developmental immunoreactivity for GABA and GAD in the avian retina: possible alternative pathway for GABA synthesis. Brain Res. 1990;532:197-202. doi:10.1016/0006-8993(90)91760-e
Le TN, Zhou QP, Cobos I, et al. GABAergic interneuron differentiation in the basal forebrain is mediated through direct regulation of glutamic acid decarboxylase isoforms by Dlx homeobox transcription factors. J Neurosci. 2017;37:8816-8829. doi:10.1523/jneurosci.2125-16.2017
Oda M, Yamamoto H, Matsumoto H, Ishizaki Y, Shibasaki K. TRPC5 regulates axonal outgrowth in developing retinal ganglion cells. Lab Invest. 2020;100:297-310. doi:10.1038/s41374-019-0347-1
Saito K, Kakizaki T, Hayashi R, et al. The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice. Mol Brain. 2010;3:40. doi:10.1186/1756-6606-3-40
Hanamura K, Mizui T, Kakizaki T, et al. Low accumulation of drebrin at glutamatergic postsynaptic sites on GABAergic neurons. Neuroscience. 2010;169:1489-1500. doi:10.1016/j.neuroscience.2010.06.043
Suto T, Kato D, Obata H, Saito S. Tropomyosin receptor kinase B receptor activation in the locus coeruleus restores impairment of endogenous analgesia at a late stage following nerve injury in rats. J Pain. 2019;20:600-609. doi:10.1016/j.jpain.2018.11.008
Chintagari NR, Jin N, Gao L, Wang Y, Xi D, Liu L. Role of GABA receptors in fetal lung development in rats. PLoS One. 2010;5:e14171. doi:10.1371/journal.pone.0014171
Jin N, Guo Y, Sun P, et al. Ionotropic GABA receptor expression in the lung during development. Gene Expr Patterns. 2008;8:397-403. doi:10.1016/j.gep.2008.04.008
Wyszynski DF, Beaty TH, Maestri NE. Genetics of nonsyndromic oral clefts revisited. Cleft Palate Craniofac J. 1996;33:406-417. doi:10.1597/1545-1569_1996_033_0406_gonocr_2.3.co_2
Wojcik SM, Katsurabayashi S, Guillemin I, et al. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron. 2006;50:575-587. doi:10.1016/j.neuron.2006.04.016
Fujii M, Arata A, Kanbara-Kume N, Saito K, Yanagawa Y, Obata K. Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter. Neuroscience. 2007;146:1044-1052. doi:10.1016/j.neuroscience.2007.02.050
Wang S, Du L, Peng G, Li W. GABA inhibits proliferation and self-renewal of mouse retinal progenitor cell. Cell Death Discov. 2019;5:80. doi:10.1038/s41420-019-0160-z
Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:1873-1879. doi:10.1113/jphysiol.2008.167635
LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 1995;15:1287-1298. doi:10.1016/0896-6273(95)90008-x
Haydar TF, Wang F, Schwartz ML, Rakic P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci. 2000;20:5764-5774. doi:10.1523/jneurosci.20-15-05764.2000
Neuray C, Maroofian R, Scala M, et al. Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants. Brain. 2020;143:2388-2397. doi:10.1093/brain/awaa178

Auteurs

Weiru Jiang (W)

Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.

Toshikazu Kakizaki (T)

Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.

Kazuyuki Fujihara (K)

Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.

Shigeo Miyata (S)

Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.

Yue Zhang (Y)

Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.
Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China.

Takashi Suto (T)

Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Daiki Kato (D)

Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Shigeru Saito (S)

Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Koji Shibasaki (K)

Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Yasuki Ishizaki (Y)

Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Koji Isoda (K)

Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Hideaki Yokoo (H)

Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan.

Hideru Obinata (H)

Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan.

Touko Hirano (T)

Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan.

Yoshiki Miyasaka (Y)

Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan.

Tomoji Mashimo (T)

Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Yuchio Yanagawa (Y)

Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH