Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review.
adsorbents
adsorption
metal–organic frameworks (MOFs)
produced water
sustainability
water treatment
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
10 Dec 2021
10 Dec 2021
Historique:
received:
07
11
2021
revised:
22
11
2021
accepted:
24
11
2021
entrez:
24
12
2021
pubmed:
25
12
2021
medline:
25
12
2021
Statut:
epublish
Résumé
A large volume of produced water (PW) has been produced as a result of extensive industrialization and rising energy demands. PW comprises organic and inorganic pollutants, such as oil, heavy metals, aliphatic hydrocarbons, and radioactive materials. The increase in PW volume globally may result in irreversible environmental damage due to the pollutants' complex nature. Several conventional treatment methods, including physical, chemical, and biological methods, are available for produced water treatment that can reduce the environmental damages. Studies have shown that adsorption is a useful technique for PW treatment and may be more effective than conventional techniques. However, the application of adsorption when treating PW is not well recorded. In the current review, the removal efficiencies of adsorbents in PW treatment are critically analyzed. An overview is provided on the merits and demerits of the adsorption techniques, focusing on overall water composition, regulatory discharge limits, and the hazardous effects of the pollutants. Moreover, this review highlights a potential alternative to conventional technologies, namely, porous adsorbent materials known as metal-organic frameworks (MOFs), demonstrating their significance and efficiency in removing contaminants. This study suggests ways to overcome the existing limitations of conventional adsorbents, which include low surface area and issues with reuse and regeneration. Moreover, it is concluded that there is a need to develop highly porous, efficient, eco-friendly, cost-effective, mechanically stable, and sustainable MOF hybrids for produced water treatment.
Identifiants
pubmed: 34947202
pii: ma14247607
doi: 10.3390/ma14247607
pmc: PMC8707545
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Références
Mar Environ Res. 2002 Feb;53(1):95-116
pubmed: 11767256
Nanomaterials (Basel). 2018 Dec 16;8(12):
pubmed: 30558372
J Hazard Mater. 2011 Nov 30;196:36-43
pubmed: 21924826
J Environ Radioact. 2010 Jan;101(1):51-4
pubmed: 19782444
Chem Soc Rev. 2017 Jun 6;46(11):3453-3480
pubmed: 28530737
J Am Chem Soc. 2014 May 14;136(19):6786-9
pubmed: 24786337
Chem Soc Rev. 2009 May;38(5):1477-504
pubmed: 19384449
Water Sci Technol. 2016;73(10):2361-9
pubmed: 27191556
Chemistry. 2010 Dec 17;16(47):14043-50
pubmed: 20967910
J Hazard Mater. 2009 Sep 15;168(2-3):1111-7
pubmed: 19329248
Appl Radiat Isot. 2001 Jul;55(1):141-6
pubmed: 11339531
Environ Sci Process Impacts. 2019 Feb 21;21(2):324-338
pubmed: 30498815
Chem Soc Rev. 2011 Feb;40(2):1059-80
pubmed: 21221446
Sci Total Environ. 2018 Sep 1;634:1519-1529
pubmed: 29710650
J Environ Radioact. 2015 Mar;141:82-9
pubmed: 25562751
Polymers (Basel). 2019 Mar 04;11(3):
pubmed: 30960394
J Hazard Mater. 2009 Oct 15;170(1):7-12
pubmed: 19505753
Environ Sci Technol. 2016 Aug 2;50(15):8036-48
pubmed: 27419914
J Hazard Mater. 2020 Feb 15;384:121348
pubmed: 31623998
Nat Chem. 2012 Feb 19;4(4):310-6
pubmed: 22437717
Sci Total Environ. 2019 May 20;666:12-21
pubmed: 30784818
Chemosphere. 2018 Feb;192:186-208
pubmed: 29102864
Mar Pollut Bull. 2002 Mar;44(3):185-203
pubmed: 11954735
Environ Monit Assess. 2015 Nov;187(11):723
pubmed: 26519077
J Environ Radioact. 2017 Sep;175-176:34-38
pubmed: 28431375
J Am Chem Soc. 2011 Nov 16;133(45):18094-7
pubmed: 21981413
Rev Environ Contam Toxicol. 2019;246:1-32
pubmed: 29280081
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4349-52
pubmed: 25678397
Science. 2013 Aug 30;341(6149):1230444
pubmed: 23990564
J Am Chem Soc. 2006 Aug 9;128(31):10223-30
pubmed: 16881652
J Environ Radioact. 2013 Feb;116:197-200
pubmed: 23121713
Mar Environ Res. 2007 Mar;63(2):146-67
pubmed: 17014903
Materials (Basel). 2021 May 28;14(11):
pubmed: 34071522
Waste Manag. 2009 Aug;29(8):2227-39
pubmed: 19401266
Chem Soc Rev. 2014 Aug 21;43(16):5913-32
pubmed: 24733639
Chem Soc Rev. 2012 Mar 21;41(6):2323-43
pubmed: 22170510
Angew Chem Int Ed Engl. 2008;47(22):4211-6
pubmed: 18404746
J Toxicol. 2016;2016:4369604
pubmed: 28090207
Chemosphere. 2021 Jun;273:129550
pubmed: 33508689
J Hazard Mater. 2012 Nov 15;239-240:95-101
pubmed: 23009788
Environ Monit Assess. 2011 Sep;180(1-4):15-29
pubmed: 21072583
J Am Chem Soc. 2011 Aug 10;133(31):11822-5
pubmed: 21761819
Environ Toxicol Chem. 2004 May;23(5):1194-203
pubmed: 15180370
Water Res. 2001 Oct;35(15):3567-78
pubmed: 11561616
Chemistry. 2008;14(6):1814-21
pubmed: 18092315
Appl Radiat Isot. 2001 Jul;55(1):135-9
pubmed: 11339530
J Hazard Mater. 2009 Oct 30;170(2-3):530-51
pubmed: 19505758
Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan 24;118:857-60
pubmed: 24152870
Chemistry. 2001 Apr 1;7(7):1555-60
pubmed: 11330912
Science. 2013 Jul 26;341(6144):354-5
pubmed: 23888028
Chem Soc Rev. 2017 Jun 6;46(11):3357-3385
pubmed: 28345694
J Environ Radioact. 2008 Jul;99(7):1026-31
pubmed: 18207291
J Colloid Interface Sci. 2015 Jun 1;447:120-7
pubmed: 25702869
J Am Chem Soc. 2009 Mar 25;131(11):3814-5
pubmed: 19256486
Health Phys. 1994 Jul;67(1):34-8
pubmed: 8200799
Bioresour Technol. 2012 Feb;105:31-9
pubmed: 22178487