Cross-Modal Distillation to Improve MRI-Based Brain Tumor Segmentation With Missing MRI Sequences.
Journal
IEEE transactions on bio-medical engineering
ISSN: 1558-2531
Titre abrégé: IEEE Trans Biomed Eng
Pays: United States
ID NLM: 0012737
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
pubmed:
24
12
2021
medline:
22
6
2022
entrez:
23
12
2021
Statut:
ppublish
Résumé
Convolutional neural networks (CNNs) for brain tumor segmentation are generally developed using complete sets of magnetic resonance imaging (MRI) sequences for both training and inference. As such, these algorithms are not trained for realistic, clinical scenarios where parts of the MRI sequences which were used for training, are missing during inference. To increase clinical applicability, we proposed a cross-modal distillation approach to leverage the availability of multi-sequence MRI data for training and generate an enriched CNN model which uses only single-sequence MRI data for inference but outperforms a single-sequence CNN model. We assessed the performance of the proposed method for whole tumor and tumor core segmentation with multi-sequence MRI data available for training but only T
Identifiants
pubmed: 34941496
doi: 10.1109/TBME.2021.3137561
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM