Clustering in ferronematics-The effect of magnetic collective ordering.
Colloids
Magnetic materials
Nanoparticles
Physics
Journal
iScience
ISSN: 2589-0042
Titre abrégé: iScience
Pays: United States
ID NLM: 101724038
Informations de publication
Date de publication:
17 Dec 2021
17 Dec 2021
Historique:
received:
17
08
2021
revised:
05
11
2021
accepted:
19
11
2021
entrez:
20
12
2021
pubmed:
21
12
2021
medline:
21
12
2021
Statut:
epublish
Résumé
Clustering of magnetic nanoparticles can dramatically change their collective magnetic properties, and it consequently may influence their performance in biomedical and technological applications. Owing to tailored surface modification of magnetic particles such composites represent stable systems. Here, we report ferronematic mixtures that contain anisotropic clusters of mesogen-hybridized cobalt ferrite nanoparticles dispersed in liquid crystal host studied by different experimental methods-magnetization measurements, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and capacitance measurements. These measurements reveal non-monotonic dependencies of magnetization curves and the Fréedericksz transition on the magnetic nanoparticles concentration. This can be explained by the formation of clusters, whose structures were determined by SAXS measurements. Complementary to the magnetization measurements, SANS measurements of the samples were performed for different magnetic field strengths to obtain information on the orientation of the liquid crystal molecules. We demonstrated that such hybrid materials offer new avenues for tunable materials.
Identifiants
pubmed: 34927029
doi: 10.1016/j.isci.2021.103493
pii: S2589-0042(21)01464-4
pmc: PMC8649803
doi:
Types de publication
Journal Article
Langues
eng
Pagination
103493Informations de copyright
© 2021 The Authors.
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
J Appl Crystallogr. 2015 Mar 12;48(Pt 2):431-443
pubmed: 25844078
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225
pubmed: 28808438
Emerg Top Life Sci. 2018 Apr 20;2(1):69-79
pubmed: 33525782
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011702
pubmed: 17677466
Biophys J. 1999 Jun;76(6):2879-86
pubmed: 10354416
J Colloid Interface Sci. 2010 Dec 15;352(2):292-8
pubmed: 20869064
Nanoscale. 2013 Sep 21;5(18):8307-8325
pubmed: 23860639
J Synchrotron Radiat. 2009 May;16(Pt 3):368-75
pubmed: 19395800
Chemphyschem. 2014 May 19;15(7):1413-21
pubmed: 24615927
Soft Matter. 2016 Aug 21;12(31):6601-9
pubmed: 27439890
Top Curr Chem. 2012;318:331-93
pubmed: 21928012
Phys Rev E. 2021 May;103(5-1):052702
pubmed: 34134325
J Am Chem Soc. 2007 Mar 7;129(9):2628-35
pubmed: 17266310
Small. 2010 Jun 21;6(12):1341-6
pubmed: 20486228
Beilstein J Nanotechnol. 2018 Apr 3;9:1050-1074
pubmed: 29719757
Chem Rev. 2016 Sep 28;116(18):11128-80
pubmed: 27054962
Soft Matter. 2017 Nov 8;13(43):7890-7896
pubmed: 29022016
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051704
pubmed: 23214802
J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):2681-2693
pubmed: 34838316
Inorg Chem. 2020 Mar 16;59(6):3677-3685
pubmed: 32090551
Phys Rev E. 2021 May;103(5-1):052703
pubmed: 34134338
Nanotechnology. 2010 Jan 8;21(1):015706
pubmed: 19946160
J Colloid Interface Sci. 2012 Nov 15;386(1):158-66
pubmed: 22935749
Nanoscale. 2013 Aug 7;5(15):6641-61
pubmed: 23817742
Chemphyschem. 2009 Jun 2;10(8):1211-8
pubmed: 19334026
Langmuir. 2015 Apr 14;31(14):4361-71
pubmed: 25396748
Phys Chem Chem Phys. 2017 May 17;19(19):12127-12135
pubmed: 28447080