Efficient and Accurate Computational Model of Neuron with Spike Frequency Adaptation.
Journal
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
ISSN: 2694-0604
Titre abrégé: Annu Int Conf IEEE Eng Med Biol Soc
Pays: United States
ID NLM: 101763872
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
entrez:
11
12
2021
pubmed:
12
12
2021
medline:
5
1
2022
Statut:
ppublish
Résumé
Simplified models of neurons are widely used in computational investigations of large networks. One of the most important performance metrics of simplified models is their accuracy in reproducing action potential (spike) timing. In this article, we developed a simple, computationally efficient neuron model by modifying the adaptive exponential integrate and fire (AdEx) model [1] with sigmoid afterhyperpolarization current (Sigmoid AHP). Our model can precisely match the spike times and spike frequency adaptation of cortical pyramidal neurons. The accuracy was similar to a more complex two compartment biophysically realistic model of the same neurons. This work provides a simplified neuronal model with improved spike timing accuracy for use in modeling of large neural networks.Clinical Relevance- Accurate and computationally efficient single neuron model will enable large network modeling of brain regions involved in neurological and psychiatric disorders and may lead to a better understanding of the disorder mechanisms.
Identifiants
pubmed: 34892598
doi: 10.1109/EMBC46164.2021.9629799
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM