Echocardiographic reference intervals for right ventricular indices, including 3-dimensional volume and 2-dimensional strain measurements in healthy dogs.


Journal

Journal of veterinary internal medicine
ISSN: 1939-1676
Titre abrégé: J Vet Intern Med
Pays: United States
ID NLM: 8708660

Informations de publication

Date de publication:
Jan 2022
Historique:
revised: 18 11 2021
received: 22 06 2021
accepted: 18 11 2021
pubmed: 8 12 2021
medline: 27 1 2022
entrez: 7 12 2021
Statut: ppublish

Résumé

There is currently a lack of reference intervals (RIs) for the novel measures like 3-dimensional (3D) echocardiography or speckle-tracking strain for assessment of right ventricular (RV) structure and function. To generate RIs and to determine the influence of age, heart rate, and body weight (BW) on various RV function indices using a dedicated RV software for 3D RV end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), global and free wall RV longitudinal strain (RVLS), end-diastolic area (RVEDA), end-systolic area (RVESA), fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), and tissue Doppler imaging (TVI)-derived systolic myocardial velocity of the lateral tricuspid annulus (S'). Healthy adult client-owned dogs (n = 211) of various breeds and ages. Prospective study. Reference intervals were estimated as statistical prediction intervals using allometric scaling for BW-dependent variables. Right-sided (upper limit) or left-sided (lower limit) 95% RIs were calculated for every variable. Inter- and intraobserver variability was determined. Most variables showed clinically acceptable repeatability with coefficient of variation less than 10. Upper or respectively lower RI after allometric scaling to normalize for different BWs were: EDVn ≤ 2.5 mL/kg Echocardiographic RIs for RV structure and function are provided.

Sections du résumé

BACKGROUND BACKGROUND
There is currently a lack of reference intervals (RIs) for the novel measures like 3-dimensional (3D) echocardiography or speckle-tracking strain for assessment of right ventricular (RV) structure and function.
OBJECTIVES OBJECTIVE
To generate RIs and to determine the influence of age, heart rate, and body weight (BW) on various RV function indices using a dedicated RV software for 3D RV end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), global and free wall RV longitudinal strain (RVLS), end-diastolic area (RVEDA), end-systolic area (RVESA), fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), and tissue Doppler imaging (TVI)-derived systolic myocardial velocity of the lateral tricuspid annulus (S').
ANIMALS METHODS
Healthy adult client-owned dogs (n = 211) of various breeds and ages.
METHODS METHODS
Prospective study. Reference intervals were estimated as statistical prediction intervals using allometric scaling for BW-dependent variables. Right-sided (upper limit) or left-sided (lower limit) 95% RIs were calculated for every variable. Inter- and intraobserver variability was determined.
RESULTS RESULTS
Most variables showed clinically acceptable repeatability with coefficient of variation less than 10. Upper or respectively lower RI after allometric scaling to normalize for different BWs were: EDVn ≤ 2.5 mL/kg
CONCLUSIONS CONCLUSIONS
Echocardiographic RIs for RV structure and function are provided.

Identifiants

pubmed: 34874066
doi: 10.1111/jvim.16331
pmc: PMC8783368
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8-19

Informations de copyright

© 2021 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine.

Références

J Vet Cardiol. 2015 Jun;17(2):83-96
pubmed: 25547662
J Vet Intern Med. 2012 Sep-Oct;26(5):1148-54
pubmed: 22860631
J Vet Cardiol. 2017 Aug;19(4):351-362
pubmed: 28739084
J Vet Cardiol. 2015 Dec;17(4):271-81
pubmed: 26476964
Heart. 2006 Apr;92 Suppl 1:i2-13
pubmed: 16543598
Neth Heart J. 2015 Apr;23(4):232-40
pubmed: 25884096
J Vet Cardiol. 2018 Oct;20(5):354-363
pubmed: 30145181
J Am Soc Echocardiogr. 2019 Aug;32(8):969-977
pubmed: 31174940
J Am Soc Echocardiogr. 2010 Feb;23(2):109-15
pubmed: 20152691
J Cardiovasc Imaging. 2018 Sep;26(3):111-124
pubmed: 30310878
Heart. 2008 Nov;94(11):1510-5
pubmed: 18931164
J Am Soc Echocardiogr. 2008 Sep;21(9):1028-34
pubmed: 18558476
J Vet Intern Med. 2004 May-Jun;18(3):311-21
pubmed: 15188817
J Am Soc Echocardiogr. 2015 Feb;28(2):183-93
pubmed: 25623220
Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2369-75
pubmed: 16399859
Circulation. 2013 Apr 16;127(15):1597-608
pubmed: 23487435
J Vet Intern Med. 2018 Jan;32(1):64-71
pubmed: 29224256
J Vet Sci. 2018 Sep 30;19(5):683-692
pubmed: 30041288
Res Vet Sci. 2016 Apr;105:103-10
pubmed: 27033916
J Vet Cardiol. 2016 Sep;18(3):234-247
pubmed: 27453517
J Vet Intern Med. 2008 Jul-Aug;22(4):924-30
pubmed: 18537876
Vet Clin Pathol. 2012 Dec;41(4):441-53
pubmed: 23240820
Vet Sci. 2020 Feb 07;7(1):
pubmed: 32046130
Eur J Echocardiogr. 2011 Sep;12(9):656-64
pubmed: 21810828
J Vet Cardiol. 2018 Jun;20(3):165-174
pubmed: 29724583
Circ Cardiovasc Imaging. 2014 Mar;7(2):230-9
pubmed: 24515411
Eur Heart J Cardiovasc Imaging. 2019 Jun 1;20(6):605-619
pubmed: 30903139
J Am Coll Cardiol. 1987 Jul;10(1):170-7
pubmed: 3597985
J Vet Intern Med. 2020 Jul;34(4):1379-1388
pubmed: 32501601
Chest. 2007 Jun;131(6):1844-51
pubmed: 17400663
Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70
pubmed: 25712077
Heart Lung Circ. 2019 Sep;28(9):1339-1350
pubmed: 31175016
Eur Heart J Cardiovasc Imaging. 2018 Jun 1;19(6):591-600
pubmed: 29596561
AJR Am J Roentgenol. 1987 Jan;148(1):33-8
pubmed: 2947435
J Am Soc Echocardiogr. 2007 May;20(5):445-55
pubmed: 17484982
J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8
pubmed: 20620859
J Vet Intern Med. 2010 Sep-Oct;24(5):1069-76
pubmed: 20707842
J Vet Cardiol. 2019 Feb;21:79-92
pubmed: 30797448
Aust Vet J. 2000 Jan;78(1):49-55
pubmed: 10736686
BMC Vet Res. 2014 Oct 12;10:242
pubmed: 25306140
J Vet Intern Med. 2018 Sep;32(5):1541-1548
pubmed: 30216561
J Vet Intern Med. 2022 Jan;36(1):8-19
pubmed: 34874066
J Vet Cardiol. 2019 Jun;23:1-14
pubmed: 31174719
J Ultrasound Med. 2011 Jan;30(1):71-83
pubmed: 21193707
J Vet Cardiol. 2013 Jun;15(2):123-30
pubmed: 23643817
Circulation. 2008 Mar 18;117(11):1436-48
pubmed: 18347220
J Vet Intern Med. 1993 Jul-Aug;7(4):247-52
pubmed: 8246215
J Vet Intern Med. 2020 Nov;34(6):2242-2252
pubmed: 33009675
J Am Heart Assoc. 2020 Apr 7;9(7):e015016
pubmed: 32242475

Auteurs

Elisabeth K Feldhütter (EK)

Clinic of Small Animal Medicine, LMU University, Munich, Germany.

Oriol Domenech (O)

Anicura Istituto Veterinario Novara, Novara, Italy.

Tommaso Vezzosi (T)

Anicura Istituto Veterinario Novara, Novara, Italy.
Department of Veterinary Sciences, University of Pisa, Pisa, Italy.

Rosalba Tognetti (R)

Department of Veterinary Sciences, University of Pisa, Pisa, Italy.

Nadja Sauter (N)

Statistical Consulting Unit StaBLab, LMU University, Munich, Germany.

Alexander Bauer (A)

Statistical Consulting Unit StaBLab, LMU University, Munich, Germany.

Jenny Eberhard (J)

Clinic of Small Animal Medicine, LMU University, Munich, Germany.

Jana Friederich (J)

Clinic of Small Animal Medicine, LMU University, Munich, Germany.

Gerhard Wess (G)

Clinic of Small Animal Medicine, LMU University, Munich, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH