Mesenchymal stromal cells mitigate liver damage after extended resection in the pig by modulating thrombospondin-1/TGF-β.


Journal

NPJ Regenerative medicine
ISSN: 2057-3995
Titre abrégé: NPJ Regen Med
Pays: United States
ID NLM: 101699846

Informations de publication

Date de publication:
03 Dec 2021
Historique:
received: 09 06 2021
accepted: 01 11 2021
entrez: 4 12 2021
pubmed: 5 12 2021
medline: 5 12 2021
Statut: epublish

Résumé

Post-surgery liver failure is a serious complication for patients after extended partial hepatectomies (ePHx). Previously, we demonstrated in the pig model that transplantation of mesenchymal stromal cells (MSC) improved circulatory maintenance and supported multi-organ functions after 70% liver resection. Mechanisms behind the beneficial MSC effects remained unknown. Here we performed 70% liver resection in pigs with and without MSC treatment, and animals were monitored for 24 h post surgery. Gene expression profiles were determined in the lung and liver. Bioinformatics analysis predicted organ-independent MSC targets, importantly a role for thrombospondin-1 linked to transforming growth factor-β (TGF-β) and downstream signaling towards providing epithelial plasticity and epithelial-mesenchymal transition (EMT). This prediction was supported histologically and mechanistically, the latter with primary hepatocyte cell cultures. MSC attenuated the surgery-induced increase of tissue damage, of thrombospondin-1 and TGF-β, as well as of epithelial plasticity in both the liver and lung. This suggests that MSC ameliorated surgery-induced hepatocellular stress and EMT, thus supporting epithelial integrity and facilitating regeneration. MSC-derived soluble factor(s) did not directly interfere with intracellular TGF-β signaling, but inhibited thrombospondin-1 secretion from thrombocytes and non-parenchymal liver cells, therewith obviously reducing the availability of active TGF-β.

Identifiants

pubmed: 34862411
doi: 10.1038/s41536-021-00194-4
pii: 10.1038/s41536-021-00194-4
pmc: PMC8642541
doi:

Types de publication

Journal Article

Langues

eng

Pagination

84

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CH 109/25-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 436883643
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DO 373-20/1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DO 373-19/1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TA 1583/1-1
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : PTJ-031L0043
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : PTJ-031L0043

Informations de copyright

© 2021. The Author(s).

Références

Uccelli, A. & de Rosbo, N. K. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann. N. Y. Acad. Sci. 1351, 114–126 (2015).
pubmed: 26152292 doi: 10.1111/nyas.12815
Prockop, D. J. Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol. 51, 7–13 (2016).
pubmed: 26807758 pmcid: 4842094 doi: 10.1016/j.matbio.2016.01.010
Ezquer, M., Ezquer, F., Ricca, M., Allers, C. & Conget, P. Intravenous administration of multipotent stromal cells prevents the onset of non-alcoholic steatohepatitis in obese mice with metabolic syndrome. J. Hepatol. 55, 1112–1120 (2011).
pubmed: 21356258 doi: 10.1016/j.jhep.2011.02.020
Winkler, S. et al. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model. Exp. Cell Res. 326, 230–239 (2014).
pubmed: 24786317 doi: 10.1016/j.yexcr.2014.04.017
Stock, P., Bruckner, S., Winkler, S., Dollinger, M. M. & Christ, B. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. Int. J. Mol. Sci. 15, 7004–7028 (2014).
pubmed: 24758938 pmcid: 4013675 doi: 10.3390/ijms15047004
Liu, Z. et al. Human umbilical cord mesenchymal stromal cells rescue mice from acetaminophen-induced acute liver failure. Cytotherapy 16, 1207–1219 (2014).
pubmed: 25108650 doi: 10.1016/j.jcyt.2014.05.018
Shi, D. et al. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut 66, 955–964 (2017).
pubmed: 26884426 doi: 10.1136/gutjnl-2015-311146
Baligar, P. et al. Bone marrow stem cell therapy partially ameliorates pathological consequences in livers of mice expressing mutant human alpha1-antitrypsin. Hepatology 65, 1319–1335 (2017).
pubmed: 28056498 doi: 10.1002/hep.29027
Tautenhahn, H. M. et al. Attenuation of postoperative acute liver failure by mesenchymal stem cell treatment due to metabolic implications. Ann. Surg. 263, 546–556 (2016).
pubmed: 25775061 doi: 10.1097/SLA.0000000000001155
Apostolou, K. G. et al. Undifferentiated adipose tissue stem cell transplantation promotes hepatic regeneration, ameliorates histopathologic damage of the liver, and upregulates the expression of liver regeneration- and liver-specific genes in a rat model of partial hepatectomy. Stem Cells Int. 2018, 1393607 (2018).
pubmed: 29731771 pmcid: 5872619 doi: 10.1155/2018/1393607
Guglielmi, A., Ruzzenente, A., Conci, S., Valdegamberi, A. & Iacono, C. How much remnant is enough in liver resection? Digestive Surg. 29, 6–17 (2012).
doi: 10.1159/000335713
Schindl, M. J. et al. The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut 54, 289–296 (2005).
pubmed: 15647196 pmcid: 1774834 doi: 10.1136/gut.2004.046524
Lafaro, K. et al. Defining post hepatectomy liver insufficiency: where do we stand? J. Gastrointest. Surg. 19, 2079–2092 (2015).
pubmed: 26063080 doi: 10.1007/s11605-015-2872-6
Balzan, S. et al. The “50-50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann. Surg. 242, 824–828 (2005). discussion 828-829.
pubmed: 16327492 pmcid: 1409891 doi: 10.1097/01.sla.0000189131.90876.9e
Chin, K. M. et al. Early prediction of post-hepatectomy liver failure in patients undergoing major hepatectomy using a PHLF prognostic nomogram. World J. Surg. 44, 4197–4206 (2020).
pubmed: 32860142 doi: 10.1007/s00268-020-05713-w
Mahmud, N. et al. Novel risk prediction models for post-operative mortality in patients with cirrhosis. Hepatology 73, 204–218 (2021).
pubmed: 32939786 doi: 10.1002/hep.31558
Starlinger, P. et al. The profile of platelet alpha-granule released molecules affects postoperative liver regeneration. Hepatology 63, 1675–1688 (2016).
pubmed: 26528955 doi: 10.1002/hep.28331
Kuroki, H. et al. Effect of LSKL peptide on thrombospondin 1-mediated transforming growth factor beta signal activation and liver regeneration after hepatectomy in an experimental model. Br. J. Surg. 102, 813–825 (2015).
pubmed: 25866938 pmcid: 4654236 doi: 10.1002/bjs.9765
Hayashi, H., Sakai, K., Baba, H. & Sakai, T. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice. Hepatology 55, 1562–1573 (2012).
pubmed: 22105716 doi: 10.1002/hep.24800
Braun, L. et al. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. Proc. Natl Acad. Sci. USA 85, 1539–1543 (1988).
pubmed: 3422749 pmcid: 279808 doi: 10.1073/pnas.85.5.1539
Choi, S. S. & Diehl, A. M. Epithelial-to-mesenchymal transitions in the liver. Hepatology 50, 2007–2013 (2009).
pubmed: 19824076 doi: 10.1002/hep.23196
Tautenhahn, H. M. et al. Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model. Sci. Rep. 7, 2617 (2017).
pubmed: 28572613 pmcid: 5454025 doi: 10.1038/s41598-017-02670-8
Vlaic, S. et al. ModuleDiscoverer: identification of regulatory modules in protein-protein interaction networks. Sci. Rep. 8, 433 (2018).
pubmed: 29323246 pmcid: 5764996 doi: 10.1038/s41598-017-18370-2
Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformtics. 8, 22 (2007).
doi: 10.1186/1471-2105-8-22
Adams, J. C. Thrombospondin-1. Int. J. Biochem. Cell Biol. 29, 861–865 (1997).
pubmed: 9304800 doi: 10.1016/S1357-2725(96)00171-9
Sipes, J. M., Murphy-Ullrich, J. E. & Roberts, D. D. Thrombospondins: purification of human platelet thrombospondin-1. Methods Cell Biol. 143, 347–369 (2018).
pubmed: 29310787 doi: 10.1016/bs.mcb.2017.08.021
Schultz-Cherry, S. & Murphy-Ullrich, J. E. Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J. Cell Biol. 122, 923–932 (1993).
pubmed: 8349738 doi: 10.1083/jcb.122.4.923
Resovi, A., Pinessi, D., Chiorino, G. & Taraboletti, G. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 37, 83–91 (2014).
pubmed: 24476925 doi: 10.1016/j.matbio.2014.01.012
Willis, B. C. & Borok, Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L525–L534 (2007).
pubmed: 17631612 doi: 10.1152/ajplung.00163.2007
Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).
pubmed: 21307119 doi: 10.1530/JOE-10-0377
Yadav, S. & Storrie, B. The cellular basis of platelet secretion: emerging structure/function relationships. Platelets 28, 108–118 (2017).
pubmed: 28010140 doi: 10.1080/09537104.2016.1257786
Gomes, N., Legrand, C. & Fauvel-Lafeve, F. Shear stress induced release of von Willebrand factor and thrombospondin-1 in HUVEC extracellular matrix enhances breast tumour cell adhesion. Clin. Exp. Metastasis 22, 215–223 (2005).
pubmed: 16158249 doi: 10.1007/s10585-005-7359-5
Oh, S. H., Swiderska-Syn, M., Jewell, M. L., Premont, R. T. & Diehl, A. M. Liver regeneration requires Yap1-TGFbeta-dependent epithelial-mesenchymal transition in hepatocytes. J. Hepatol. 69, 359–367 (2018).
pubmed: 29758331 pmcid: 6349217 doi: 10.1016/j.jhep.2018.05.008
Manmadhan, S. & Ehmer, U. Hippo signaling in the liver - a long and ever-expanding story. Front. Cell Dev. Biol. 7, 33 (2019).
pubmed: 30931304 pmcid: 6423448 doi: 10.3389/fcell.2019.00033
Dooley, S. et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 135, 642–659 (2008).
pubmed: 18602923 doi: 10.1053/j.gastro.2008.04.038
Murphy-Ullrich, J. E. & Poczatek, M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 11, 59–69 (2000).
pubmed: 10708953 doi: 10.1016/S1359-6101(99)00029-5
Fan, X. L., Zhang, Y., Li, X. & Fu, Q. L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. life Sci. 77, 2771–2794 (2020).
pubmed: 31965214 pmcid: 7223321 doi: 10.1007/s00018-020-03454-6
Eigenthaler, M., Nolte, C., Halbrugge, M. & Walter, U. Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. Eur. J. Biochem. 205, 471–481 (1992).
pubmed: 1315268 doi: 10.1111/j.1432-1033.1992.tb16803.x
Starlinger, P. et al. Plasma thrombospondin 1 as a predictor of postoperative liver dysfunction. Br. J. Surg. 102, 826–836 (2015).
pubmed: 25871570 doi: 10.1002/bjs.9814
Baenziger, N. L., Brodie, G. N. & Majerus, P. W. Isolation and properties of a thrombin-sensitive protein of human platelets. J. Biol. Chem. 247, 2723–2731 (1972).
pubmed: 4260214 doi: 10.1016/S0021-9258(19)45271-X
Pereyra, D. et al. Early prediction of postoperative liver dysfunction and clinical outcome using antithrombin III-activity. PLoS ONE 12, e0175359 (2017).
pubmed: 28406940 pmcid: 5391027 doi: 10.1371/journal.pone.0175359
Kuroda, S. et al. Administration of antithrombin III attenuates posthepatectomy liver failure in hepatocellular carcinoma. Digestive Surg. 32, 173–180 (2015).
doi: 10.1159/000379759
Dhar, A., Mullish, B. H. & Thursz, M. R. Anticoagulation in chronic liver disease. J. Hepatol. 66, 1313–1326 (2017).
pubmed: 28088580 doi: 10.1016/j.jhep.2017.01.006
Court, F. G. et al. Segmental nature of the porcine liver and its potential as a model for experimental partial hepatectomy. Br. J. Surg. 90, 440–444 (2003).
pubmed: 12673745 doi: 10.1002/bjs.4053
Golriz, M. et al. Establishing a porcine model of small for size syndrome following liver resection. Can. J. Gastroenterol. Hepatol. 2017, 5127178 (2017).
pubmed: 28951864 pmcid: 5603121 doi: 10.1155/2017/5127178
Esmaeilzadeh, M. et al. Technical guidelines for porcine liver allo-transplantation: a review of literature. Ann. Transplant. 17, 101–110 (2012).
pubmed: 22743728 doi: 10.12659/AOT.883228
Lu, T., Yang, B., Wang, R. & Qin, C. Xenotransplantation: current status in preclinical research. Front. Immunol. 10, 3060 (2019).
pubmed: 32038617 doi: 10.3389/fimmu.2019.03060
Stravitz, R. T. & Lee, W. M. Acute liver failure. Lancet 394, 869–881 (2019).
pubmed: 31498101 doi: 10.1016/S0140-6736(19)31894-X
Arkadopoulos, N. et al. Development of a porcine model of post-hepatectomy liver failure. J. Surg. Res. 170, e233–e242 (2011).
pubmed: 21816413 doi: 10.1016/j.jss.2011.06.006
Bruckner, S. et al. A fat option for the pig: hepatocytic differentiated mesenchymal stem cells for translational research. Exp. Cell Res. 321, 267–275 (2014).
pubmed: 24200501 doi: 10.1016/j.yexcr.2013.10.018
Stock, P. et al. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat. Protoc. 5, 617–627 (2010).
pubmed: 20224562 doi: 10.1038/nprot.2010.7
Winkler, S. et al. Identification of pathways in liver repair potentially targeted by secretory proteins from human mesenchymal stem cells. Int. J. Mol. Sci. 17, 1099 (2016).
pmcid: 4964475 doi: 10.3390/ijms17071099
Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).
pubmed: 12925520 doi: 10.1093/biostatistics/4.2.249
Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).
pubmed: 16284200 pmcid: 1283542 doi: 10.1093/nar/gni179
Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic acids Res. 31, e15 (2003).
pubmed: 12582260 pmcid: 150247 doi: 10.1093/nar/gng015
Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy−Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).
pubmed: 14960456 doi: 10.1093/bioinformatics/btg405
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
pubmed: 16632515 doi: 10.1093/biostatistics/kxj037
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669 pmcid: 3307112 doi: 10.1093/bioinformatics/bts034
Leek, J. T. et al. sva: Surrogate Variable Analysis, R package version 3.18.0. (2015).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).
pubmed: 21164525 pmcid: 3140052 doi: 10.1038/nrg2918
Barrenas, F. et al. Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms. Genome Biol. 13, R46 (2012).
pubmed: 22703998 pmcid: 3446318 doi: 10.1186/gb-2012-13-6-r46
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
pubmed: 27924014 doi: 10.1093/nar/gkw937
Aken, B. L., et al. The Ensembl gene annotation system. Database 2016, baw093 (2016).
Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).
pubmed: 19617889 pmcid: 3159387 doi: 10.1038/nprot.2009.97
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728 pmcid: 2929880 doi: 10.18637/jss.v033.i01
Seglen, P. O. Preparation of isolated rat liver cells. Methods cell Biol. 13, 29–83 (1976).
pubmed: 177845 doi: 10.1016/S0091-679X(08)61797-5
Schneider, C., Aurich, H., Wenkel, R. & Christ, B. Propagation and functional characterization of serum-free cultured porcine hepatocytes for downstream applications. Cell tissue Res. 323, 433–442 (2006).
pubmed: 16315006 doi: 10.1007/s00441-005-0089-9
Winkler, S. et al. Immune-deficient Pfp/Rag2(-/-) mice featured higher adipose tissue mass and liver lipid accumulation with growing age than wildtype C57BL/6N mice. Cells 8, 775 (2019).
pmcid: 6721582 doi: 10.3390/cells8080775
Joshi, N. et al. Coagulation-driven platelet activation reduces cholestatic liver injury and fibrosis in mice. J. thrombosis Haemost. 13, 57–71 (2015).
doi: 10.1111/jth.12770

Auteurs

Sandra Nickel (S)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.
Division of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.

Sebastian Vlaic (S)

Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.
Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Jena, Germany.

Madlen Christ (M)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Kristin Schubert (K)

Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.

Reinhard Henschler (R)

Institute of Transfusion Medicine, University of Leipzig Medical Center, Leipzig, Germany.

Franziska Tautenhahn (F)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Caroline Burger (C)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Hagen Kühne (H)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Silvio Erler (S)

Institute of Biology, Animal Ecology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.

Andreas Roth (A)

Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Christiane Wild (C)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Janine Brach (J)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Seddik Hammad (S)

Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Faculty of Veterinary Medicine, Department of Forensic and Toxicology, South Valley University, Qena, Egypt.

Claudia Gittel (C)

Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany.

Manja Baunack (M)

Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany.

Undine Lange (U)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Johannes Broschewitz (J)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Peggy Stock (P)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Isabella Metelmann (I)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Michael Bartels (M)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.
Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, HELIOS Park-Klinikum Leipzig, Leipzig, Germany.

Uta-Carolin Pietsch (UC)

Department of Anaesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany.

Sebastian Krämer (S)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Uwe Eichfeld (U)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany.

Martin von Bergen (M)

Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Institute of Biochemistry, Leipzig University, Leipzig, Germany.

Steven Dooley (S)

Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Hans-Michael Tautenhahn (HM)

Division of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.
Research Programme "Else Kröner-Forschungskolleg AntiAge", Jena University Hospital, 07747, Jena, Germany.

Bruno Christ (B)

Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany. bruno.christ@medizin.uni-leipzig.de.

Classifications MeSH