Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence.
Journal
ArXiv
ISSN: 2331-8422
Titre abrégé: ArXiv
Pays: United States
ID NLM: 101759493
Informations de publication
Date de publication:
18 Nov 2021
18 Nov 2021
Historique:
entrez:
24
11
2021
pubmed:
25
11
2021
medline:
25
11
2021
Statut:
epublish
Résumé
Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health.
Types de publication
Preprint
Langues
eng
Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : U01 CA242879
Pays : United States
Commentaires et corrections
Type : UpdateIn
Références
Radiology. 2020 Apr;295(1):202-207
pubmed: 32017661
Nat Biotechnol. 2020 Jul;38(7):870-874
pubmed: 32300245
Radiology. 2020 Aug;296(2):E46-E54
pubmed: 32155105
Radiology. 2020 Apr;295(1):16-17
pubmed: 32017662
Lancet Infect Dis. 2020 Apr;20(4):425-434
pubmed: 32105637
Nat Commun. 2020 Aug 14;11(1):4080
pubmed: 32796848
Nat Med. 2020 Aug;26(8):1224-1228
pubmed: 32427924
Nature. 2021 Jun;594(7862):265-270
pubmed: 34040261
Biosens Bioelectron. 2020 Oct 1;165:112454
pubmed: 32729549
Radiology. 2020 Aug;296(2):E115-E117
pubmed: 32073353
Science. 2018 Apr 27;360(6387):436-439
pubmed: 29449511
Nature. 2020 Jun;582(7811):277-282
pubmed: 32349121
Radiology. 2020 Aug;296(2):E65-E71
pubmed: 32191588
Nat Med. 2019 Jun;25(6):954-961
pubmed: 31110349
PLoS One. 2021 Jan 14;16(1):e0245547
pubmed: 33444422
BMJ. 2020 Jul 16;370:m2426
pubmed: 32675083
Respir Med. 2020 Jul;168:105980
pubmed: 32364959
Psychiatry Res. 2020 Sep;291:113267
pubmed: 32623266
Ann Intern Med. 2020 Aug 18;173(4):262-267
pubmed: 32422057
Sci Rep. 2019 Nov 15;9(1):16884
pubmed: 31729403
Radiology. 2020 Aug;296(2):E32-E40
pubmed: 32101510
Sci Adv. 2020 Oct 14;6(42):
pubmed: 32948511
Clin Respir J. 2018 Apr;12(4):1320-1360
pubmed: 28756639
Radiology. 2020 Aug;296(2):E113-E114
pubmed: 32105562